Bamboo-like carbon nanotubes derived from colloidal polymer nanoplates for efficient removal of Bisphenol A

Pei Wang, Peiyuan Xiao, Shuxian Zhong, Jianrong Chen*, Hongjun Lin, Xi-Lin Wu*

College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China

Fig. S1. a) SEM and TEM b) images of the PEI-MCA polymer.

Fig. S2. a) XPS survey of the b-CNTs, indicating the presence of C, N, O and Fe elements; b) Fe 2p XPS spectrum.

Fig. S3. a) Pseudo-first-order and b) Pseudo-second-order kinetic plots for BPA

adsorption onto b-CNTs.

Fig. S4. Linear plot of $\ln K^{\circ}$ vs. 1/T for the adsorption of BPA on b-CNTs at 293, 303 and 313 K.

Initial cone. $C_0 (mg \bullet L^{-1})$	Pseudo-first-order			Pseudo-second-order			
	K_1 (min ⁻¹)	Q _{e,cal} (mg/g)	R ²	Q _{e,cal} (mg/g)	K₂ g/(mg•min)	Q _{e,exp} (mg/g)	R ²
70	0.007	24.39	0.689	136.799	0.001	135.772	0.999

Table S1 Adsorption kinetic parameters of BPA onto b-CNTs.

Thermodynamics

The distribution coefficient (K_d) was calculated by the following formula:

$$K_d = \frac{C_0 - C_e}{C_e} \times \frac{\mathrm{V}}{\mathrm{m}} \tag{1}$$

where C_0 (mg/L) is the initial concentration and C_e (mg/L) is the equilibrium concentration of BPA after adsorption, V is the solution volume (L), and m is the mass of the adsorbent (g). K⁰ is the thermodynamic equilibrium constant, and the values of ln K⁰ are obtained by plotting ln K_d as a function of C_e and extrapolating C_e to zero. Linear plot of ln K° vs. 1/*T* for the adsorption of BPA on b-CNTs at 293, 303 and 313 K is shown in Fig. S4

The value of the Gibbs free energy change (ΔG^0) was calculated by the following equation

$$\Delta G^0 = -RT \ln K^0 \tag{2}$$

R is the universal gas constant (8.314 J/mol·K) and T is temperature (K). The changes of enthalpy (ΔH^0) and entropy (ΔS^0) changes can be estimated by Van't Hoff equation:

$$\ln K^{0} = -\frac{\Delta H^{0}}{RT} + \frac{\Delta S^{0}}{R}$$
(3)

The plot of $\ln K^{\circ}$ vs. 1/T gives a straight line in Fig. S4 with slope and intercept corresponding to $-\Delta H^{0}/R$ and $\Delta S^{0}/R$, respectively. The calculated thermodynamic parameters are listed in Table 2.