Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supporting Information for

Cobalt nickel phosphide nanoparticles decorated carbon nanotubes

as advanced hybrid catalyst for hydrogen evolution

Yuan Pan,[†] Yinjuan Chen,[†] Yan Lin,[†] Peixin Cui,[‡] Kaian Sun, Yunqi Liu,^{*,†}, Chenguang Liu[†]

[†]State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China University of Petroleum (East

China), Qingdao, 266580, P. R. China

[‡]National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R.

China

**Corresponding Authors: liuyq@upc.edu.cn;*

Experimental details

Materials

Nickel(II) acetylacetonate (Ni(acac)₂, 95%), cobalt(II) acetylacetonate (Co(acac)₂, 97%) trioctylphosphine (TOP, 90%), oleylamine (OAm, 95%), hydrazine hydrate (\geq 98%), and graphite powder (GP, 99.95%) and multiwall carbon nanotubes (CNTs, 95%, diam: 10-20 nm, length: 5-15 mm) were obtained from Aladdin Chemistry Co. Ltd. Hexane (\geq 99.5%), ethanol (\geq 99.7%), and sulfuric acid (H₂SO₄, 98%) were obtained from Sinopharm Chemical Reagent Co. Ltd. A Nafion solution (5% in a mixture of lower aliphatic alcohols and water) and Pt/C were purchased from Sigma-Aldrich. All chemicals were used as received without further purification.

Synthesis of pure Ni₂P catalyst

In a typical synthesis, Ni(acac)₂ (0.256 g, 1 mmol) and OAm (10 mL, 30.4 mmol) were placed in a four-neck flask and stirred magnetically under a flow of argon. The mixture was heated to 120 °C and kept at this temperature for 30 min. Then TOP (3.5 mL, 7.7 mmol) was injected into the solution, the mixture was rapidly heated to 320 °C and vigorously stirred for 2 h. After cooling to room temperature, the product was collected, centrifuged, washed with a mixture of hexane and ethanol, and finally dried in vacuum at 60 °C for 24 h.

Synthesis of pure CoP catalyst

In a typical synthesis, Co(acac)₂ (0.257 g, 1 mmol), ODE (5 mL, 15.6 mmol) and OAm (10 mL, 30.4 mmol) were placed in a four-neck flask under a flow of argon. The mixture was stirred and heated to 120 °C and kept at this temperature for 30 min. Then TOP (5 mL, 11 mmol) was added to the above solution and heated to 330 °C for 1 h. After cooling to room temperature, the product was collected, centrifuged, washed with a mixture of hexane and ethanol, and finally dried in

vacuum at 60 °C for 24 h.

Synthesis of Co_{2-x}Ni_xP/CNTs hybrid catalysts with different Co atoms

CNTs were treated with concentrated nitric acid according to a previous reported method [1]. The $Co_{2,x}Ni_xP/CNTs$ hybrid catalysts were synthesized as follows: In a typical synthesis, Ni(acac)₂ (0.096 g, 0.375 mmol), Co(acac)₂ (0.032 g, 0.125 mmol), OAm (7 mL, 21.3 mmol) and CNTs (after acid treatment, 50 mg) were placed in a four-neck flask and stirred magnetically under a flow of argon. The mixture was heated to 120 °C and kept at this temperature for 30 min. Then TOP (3.4 mL, 7.5 mmol) was injected into the solution, the mixture was rapidly heated to 320 °C and vigorously stirred for 2 h. After cooling to room temperature, the product was collected, centrifuged, washed with a mixture of hexane and ethanol, and finally dried in vacuum at 60 °C for 24 h to get the $Co_{0.5}Ni_{1.5}P/CNTs$ hybrid catalyst. Without changing the synthetic conditions, $Co_{1.1}Ni_{0.9}P/CNTs$ and $Co_{1.6}Ni_{0.4}P/CNTs$ were obtained by changing the molar ratio of Co: Ni precursor to 1.22 and 3, respectively. The $Co_{2.x}Ni_xP$ NPs were synthesized using the similar synthesis process except for without the addition of CNTs. *Note: the atomic molar ratio of Co: Ni: P of the as-synthesized Co_{2.x}Ni_xP/CNTs hybrid catalysts were confirmed from the XPS fitting results.*

Synthesis of Co_{1.6}Ni_{0.4}P/CNTs hybrid catalyst with different CNTs content

The synthesis of the $Co_{1.6}Ni_{0.4}P/CNTs$ hybrid catalyst with different CNTs content (0, 10 mg, 20 mg) was similar to that of $Co_{1.6}Ni_{0.4}P/CNTs$ -50, except for that the content of the CNTs was changed from 0 to 20 mg. In a typical synthesis, Ni(acac)₂ (0.0321 g, 0.125 mmol), Co(acac)₂ (0.0964 g, 0.375 mmol), OAm (7 mL, 21.3 mmol), and CNTs (after acid treatment, 0, 10, 20 mg) were placed in a four-neck flask and stirred magnetically under a flow of argon. Similarly, the

mixture was heated to 120 °C and kept at this temperature for 30 min. Then TOP (3.4 mL, 7.5 mmol) was injected into the solution, the mixture was rapidly heated to 320 °C and vigorously stirred for 2 h. After cooling to room temperature, the product was collected, centrifuged, and washed with a mixture of hexane and ethanol. Finally, the products were dried in vacuum at 60 °C for 24 h to obtain $Co_{1.6}Ni_{0.4}P/CNTs$ -x (x=0, 10, 20) hybrid catalysts.

Materials characterizations

X-ray diffraction (XRD) was performed on a panalytical X'pert PROX-ray diffractometer with Cu K α monochromatized radiation (λ = 1.54 Å) and operated at 45 kV and 40 mA. Transmission electron microscopy (TEM) was performed on a JEM-2100 UHR microscope (JEOL, Japan) at an accelerating voltage of 200 kV. Scanning electron microscope (SEM) images were obtained with a Hitachi S-4800 instrument at 5 kV. An energy dispersive X-ray (EDX) instrument was attached to the SEM and TEM systems. X-ray photoelectron spectroscopy (XPS) was performed on a VG ESCALABMK II spectrometer using an Al K α (1486.6 eV) photon source. N₂ adsorptiondesorption experiments were carried out on a ChemBET 3000 (Quantachrome, USA) instrument. Inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis was performed on a Thermo iCAP 6300 instrument. X-ray absorption fine structure (XAFS) were carried out in transmission mode with a Si (111) monochromator on Beamline 20-BM at Advanced Photon Source (APS), Argonne National Laboratory. The typical energy of the storage ring was 7 GeV in and experiments were performed with 100 mA in top-up progress. The incident beam intensity was monitored using an ionization chamber flowed by nitrogen while the transmission signal was collected by another ionization chamber flowed by argon.

Electrochemical measurements

The HER catalytic activity measurement of the as-synthesized $Co_{2-x}Ni_xP/CNTs$ hybrid catalysts was performed in a standard three-electrode system controlled by a Reference 600 instrument (Gamry Instruments, USA). A Ag/AgCl electrode was used as reference electrode and a Pt electrode as counter electrode. Linear sweep voltammetry (LSV) was carried out at 5 mV·s⁻¹ for the polarization curves in 0.5 M H₂SO₄ solutions. All the polarization curves were iR-corrected. The double layer capacitance (C_{dl}) was conducted with cyclic voltammograms (CVs) scanning from 0.1 to 0.2 V vs. RHE with different scan rates from 40 to 300 mV·s⁻¹. The durability test was carried out by CVs scanning 500 cycles with a scan rate of 100 mV·s⁻¹ in 0.5 M H₂SO₄ at various overpotentials from 60 to 140 mV (vs. reversible hydrogen electrode (RHE)) in the frequency range of 100 kHz to 0.1 Hz with a single modulated AC potential of 5 mV. The experimental EIS data were analyzed and fitted with the software of Zsimpwin. All the potentials reported in our work are versus the RHE, namely E (RHE) = E (Ag/AgCl) + (0.222 + 0.059 pH).

Preparation of working electrodes

To prepare the $Co_{2-x}Ni_xP/CNTs$ hybrids on glassy carbon electrode (GCE, 4 mm in diameter), 5 mg of hybrid and 80 µL Nafion solution (5 wt. %) were dispersed in 1 mL ethanol and sonicated for 30 min to form a slurry. Subsequently, 5 µL of suspension was dropped on GCE and the electrode was dried at room temperature.

Calculation of the number of active sites and turnover frequency (TOF)

The number of active sites (n) was determined using a previously reported method [2] by CV collected from -0.2 to +0.6 V vs. RHE in 1.0 M phosphate buffer solution (PBS, pH = 7) with a scan rate of 20 mV·s⁻¹. While it is difficult to assign the observed peaks to a given redox couple, n

should be proportional to the integrated charge over the whole potential range. Assuming a oneelectron process for both reduction and oxidation, the upper limit of n could be calculated with the equation:

$$n = \frac{\mathbf{Q}}{2\mathbf{F}}$$

TOF can be calculated with the equation:

$$TOF = \frac{I}{2Fn}$$

where Q is the voltammetric charge, F is the Faraday constant (96485 $C \cdot mol^{-1}$), I is the current (A) during the linear sweep measurement and n is the numbers of active sites (mol). The factor 1/2 in equation represents two electrons are required to form one hydrogen molecule from two protons.

Computational method

The density functional theory (DFT) based calculations presented in this work were carried out with the Dmol3 module in the Materials Studio package from Accelrys (version 8.0) [3]. The double numerical plus polarization (DNP) basis set with OBS [4] parameters for the van der Waals dispersion correction and PW91 exchange-correlation functional were used. Semi-core pseudopotentials (DSPPs) [5] were used to treat the core electrons of nickel and cobalt.

The Ni₂P unit cell was fully optimized with all the atoms relaxed. The Co_{1.5}Ni_{0.5}P unit cell was build on the basic of a geometry optimized Ni₂P unit cell by changing the population of cobalt and nickel on the primary nickel sites to 75 percent and 25 percent, respectively. A 5-layer slab with 46 original atoms was cleaved for the surface catalytic performance study.

To orientate the transition state geometries, the traditional linear and quadratic synchronous transient (LST/QST) methods [6] were further confirmed by minimum-energy pathway (MEP)

calculation using the nudge elastic band (NEB) [7] method. Considering the excellent migratory aptitude of single hydrogen atom, two different assembles of H atomic adsorption were chosen as displayed in Fig. S13. (a) and (b).

Fig. S1 SEM images of (a) $Co_{0.5}Ni_{1.5}P/CNTs$, (b) $Co_{1.1}Ni_{0.9}P/CNTs$ and (c) $Co_{1.6}Ni_{0.4}P/CNTs$

hybrid catalysts.

Fig. S2 EDX spectra of (a) $Co_{0.5}Ni_{1.5}P/CNTs$, (b) $Co_{1.1}Ni_{0.9}P/CNTs$ and (c) $Co_{1.6}Ni_{0.4}P/CNTs$ hybrid catalysts.

Fig. S3 FT-EXAFS spectra at the Co K-edge of CoP, $Co_{0.5}Ni_{1.5}P/CNTs$ and $Co_{1.6}Ni_{0.4}P/CNTs$ and their fitting curves. FT-EXAFS spectra at the Ni K-edge of Ni_2P and $Co_{0.5}Ni_{1.5}P/CNTs$ and their fitting curves.

Fig. S4 H₂-TPD spectra for the as-synthesized $Co_{2-x}Ni_xP/CNTs$ hybrid catalysts.

Fig. S5 (a) Nitrogen sorption isotherms and (b) BJH pore-size distribution curves of the assynthesized $Co_{2-x}Ni_xP/CNTs$ hybrid catalysts.

Fig. S6 XRD patterns of the as-synthesized (a) Ni_2P and CoP, (b) $Co_{2-x}Ni_xP$ NPs.

Fig. S7 TEM images of the as-synthesized (a) Ni_2P , (b) CoP, (c) $Co_{0.5}Ni_{1.5}P$, (d) $Co_{1.1}Ni_{0.9}P$

and (e) Co_{1.6}Ni_{0.4}P NPs.

Fig. S8 CVs of the as-synthesized $Co_{2-x}Ni_xP/CNTs$ hybrid catalysts in 0.5 M H_2SO_4 solution in the

region of 0.1-0.2 V vs. RHE with different scan rates from 40 mV·s-1 to 300 mV·s⁻¹.

Fig. S9 (a) CVs of the $Co_{2-x}Ni_xP/CNTs$ hybrid catalysts recorded in PBS electrolyte (pH = 7) with a scan rate of 20 mV·s⁻¹. (b) LSV polarization curves of the as-synthesized $Co_{2-x}Ni_xP/CNTs$ hybrid catalysts normalized by the active sites and expressed in terms of TOF.

Fig. S10 LSV polarization curves of the (a) $Co_{1.6}Ni_{0.4}P/CNTs$, (b) $Co_{1.1}Ni_{0.9}P/CNTs$ and (c) $Co_{0.5}Ni_{1.5}P/CNTs$ hybrid catalysts at different temperature.

Fig. S11 Tafel plots of the (a) $Co_{1.6}Ni_{0.4}P/CNTs$, (b) $Co_{1.1}Ni_{0.9}P/CNTs$ and (c) $Co_{0.5}Ni_{1.5}P/CNTs$

hybrid catalysts at different temperature.

Fig. S12 Exchange current densities of the (a) $Co_{1.6}Ni_{0.4}P/CNTs$, (b) $Co_{1.1}Ni_{0.9}P/CNTs$ and (c)

 $Co_{0.5}Ni_{1.5}P/CNTs$ hybrid catalysts at different temperature.

Fig. S13 (a) XRD patterns of the as-synthesized $Co_{1.6}Ni_{0.4}P/CNTs$ hybrid catalysts with different carbon content. (b) TEM image of $Co_{1.6}Ni_{0.4}P$ nanoparticles. (c) Nitrogen sorption isotherms and (d) BJH pore-size distribution curve of the as-synthesized $Co_{1.6}Ni_{0.4}P/CNTs$ hybrid catalysts with different carbon content.

Fig. S14 LSV curves of $Co_{1.6}Ni_{0.4}P/CNTs$ hybrid catalyst with different carbon content.

Note: U H atom, Ni atom, P atom.

Fig. S15 Primarily chose H atom adsorption site. (a) The center hollow site of three Ni or Co atoms and the top site of a P atom are presented with H_P and T_P in the graph. (b) The center hollow site of three metal atoms assembled with the center hollow site of three metal atoms and two P atoms, which presented with H_P and H_M in the graph. (c) and (d) are optimized H atomic adsorption sites for Ni₂P according to the geometry optimized Co_{1.5}Ni_{0.5}P adsorption configuration (a) and (b) respectively, which set the H atom at two Ni-Ni bridge sites (B_M-M) and the center hollow site of three Ni atoms (H_P) associated with the Ni-P bridge site (B_M-P).

Catalyst	Co (ω %)	Ni (ω %)	P (ω %)
Co _{0.5} Ni _{1.5} P/CNTs	6.68	24.03	7.97
Co _{1.1} Ni _{0.9} P/CNTs	15.99	18.15	9.38
Co _{1.6} Ni _{0.4} P/CNTs	24.27	7.89	9.41

Table S1 ICP-OES analysis results of the as-synthesized $\mathrm{Co}_{2\text{-}x}\mathrm{Ni}_x\mathrm{P/CNTs}.$

Ni K-edge	Absorption edge position (eV)
Ni-foil	8333.3
NiO	8344.3
Ni ₂ P	8337.6
Ni ₂ P/CNTs	8337.6
Co _{0.5} Ni _{1.5} P/CNTs	8337.6
Co _{1.6} Ni _{0.4} P/CNTs	8338.5

 Table S2 Values of the absorption edge position for Ni K-edge and Co K-edge.

Co K-edge	Absorption edge position (eV)
Co-foil	7709.9
CoO	7722.4
Co ₃ O ₄	7728.4
СоР	7723.5
Co _{0.5} Ni _{1.5} P/CNTs	7715.8
Co _{1.6} Ni _{0.4} P/CNTs	7716.7

 $\sigma^{2}(\times 10^{-3})$ (Å²) $R_j(Å)$ Catalyst Shell Ν $\Delta E_0 (eV)$ 5 Ni₂P/CNTs Ni-P 2.22 2.7 -15 Ni-Ni 6 2.67 3.7 2.8 Ni-Ni 6 2.96 2.1 2.8 Co_{0.5}Ni_{1.5}P/CNTs Ni-P 5 2.26 7.4 -5.5 4.2 Co-Ni 2.66 4.3 6.7 9.6 Co-P 5.1 2.30 3.2 $Co_{1.6}Ni_{0.4}P/CNTs$ 8.0 Co-Ni(Co) 2.55 12 -9.1 Co-P 3.6 6.2 -4.7 2.24 Co-Co 8 40 -40 2.81 CoP 12 9.5 -40 Co-Co 3.13 Co-P 6 2.02 15 -38 Co-P 8 3.14 1.2 -38

Table S3 EXAFS fitting parameters at the Ni K-edge and Co K-edge of $Ni_2P/CNTs$, $Co_{0.5}Ni_{1.5}P/CNTs$, $Co_{1.6}Ni_{0.4}P/CNTs$ and CoP catalysts^a.

^aN, coordination number; R_j , bonding distance; σ^2 , Debye-Waller factor; ΔE_0 , inner potential shift.

Catalyst	BET surface area	Pore volume (cm ³ ·g ⁻	Pore size
	$(m^2 \cdot g^{-1})$	¹)	(nm)
Co _{1.6} Ni _{0.4} P/CNTs	68.8	0.31	14.9
Co _{1.1} Ni _{0.9} P/CNTs	64.3	0.3	15.5
Co _{0.5} Ni _{1.5} P/CNTs	43.1	0.22	17.5
Co _{1.6} Ni _{0.4} P	17.3	0.04	11.1
Co _{1.6} Ni _{0.4} P/CNTs-10	31.1	0.15	18.7
Co _{1.6} Ni _{0.4} P/CNTs-20	49.2	0.22	15.7

 $\label{eq:table S4} \textbf{Table S4} \ \text{Textural properties of the as-synthesized Co}_{2\text{-}x} \text{Ni}_x P/\text{CNTs hybrid catalysts}.$

$M H_2 SO_4.$					
Catalyst	Current density	Potential	J _{exchange}	Tafel slope	Reference
	(mA·cm ⁻²)	(mV)	(mA·cm ⁻²)	$(mV \cdot dec^{-1})$	
β-INS nanosheets	10	117	0.014	48	8
α-INS nanosheets	10	105	0.02	40	8
Fe _{0.9} Co _{0.1} S ₂ /CNT	20	120		46	9
CoS ₂ @MoS ₂	10	110.5		57.3	10
α-WNP	20	110	0.044	39	11
$Fe_{0.48}Co_{0.52}S_2$	10	196		47.5	12
Co _{1.33} Ni _{0.67} P/Ti	20	430	0.071	161	13
Co _{1.33} Ni _{0.67} P/GCE	20	240	0.0059	57	13
Co _{0.59} Fe _{0.41} P	10	72	0.517	52	14
NiWS	8.6	250		55	15
Cu-MoS ₂ /rGO	81.6	400	0.0776	90	16

Table S5 Comparison of the HER catalytic performance of some reported HER catalysts in 0.5 M H₂SO₄.

169.8

135.4

118.8

0.0024

0.0046

0.0186

60.9

53.1

46.7

This work

This work

This work

Co_{0.5}Ni_{1.5}P/CNTs

Co1.1Ni0.9P/CNTs

Co_{1.6}Ni_{0.4}P/CNTs

20

20

20

Potential	R _s	Q	n	R _{ct}
(mV) vs. RHE	(Ω)	$(F \cdot cm^{-2} \cdot S^{n-1})$		(Ω)
-60	7.926	0.002422	0.8	517
-80	8.133	0.002924	0.8	210.8
-100	7.443	0.00327	0.8	90.17
-120	7.494	0.003391	0.8	43.08
-140	7.497	0.003067	0.8	23.74

Table S6 Values of elements in e	equivalent circui	t resulted from	n fitting the EIS dat	a.

Catalyst	T (K)	Tafel (mV·dec ⁻¹)	$J_0(A \cdot cm^{-2})$	E _a (kJ·mol ⁻¹)
	298	46.7	1.86×10 ⁻⁵	
Co _{1.6} Ni _{0.4} P/CNTs	308	42.9	4.79×10 ⁻⁵	57.3
	318	39	9.33×10 ⁻⁵	
	328	36.3	1.55×10-4	
	298	53.1	4.57×10 ⁻⁶	
Co _{1.1} Ni _{0.9} P/CNTs	308	46.2	1.69×10 ⁻⁵	75.2
	318	44.1	3.55×10 ⁻⁵	
	328	40	7.76×10 ⁻⁵	
	298	60.9	2.39×10 ⁻⁶	
Co _{0.5} Ni _{1.5} P/CNTs	308	55.7	1.23×10 ⁻⁵	132.9
	318	51.4	4.68×10 ⁻⁵	
	328	45.6	3.63×10 ⁻⁴	

Table S7 Kinetic parameters of the as-synthesized $Co_{2-x}Ni_xP/CNTs$ hybrid catalysts.

References

- [1] T. W. Lin, C. G. Salzmann, L. D. Shao, C. H. Yu, M. L. H. Green, S. C. Tsang, Carbon, 2009, 47, 1415.
- [2] (a) H. Du, Q. Liu, N. Cheng, A. M. Asiri, X. Sun, C. M. Li, J. Mater. Chem. A, 2014, 2, 14812.
- (b) P. Jiang, Q. Liu, X. Sun, Nanoscale, 2014, 6, 13440. (c) Z. Pu, Q. Liu, C. Tang, A. M. Asiri, X.
- Sun, Nanoscale, 2014, 6, 11031.
- [3] (a) P. Hohenberg, W. Kohn, Phys. Rev. B, 1964, 136, 864. (b) M. Levy, Proc. Natl. Acad. Sci.
- U. S. A. 1979, 76, 6062.
- [4] F. Ortmann, F. Bechstedt, W. G. Schmidt, Phys. Rev. B, 2006, 73, 205101.
- [5] B. Delley, J. Phys.: Condens. Matter, 2010, 22, 384208.
- [6] T. A. Halgren, W. N. Lipscomb, Chem. Phys. Lett., 1977, 49, 225.
- [7] G. Henkelman, H. Jonsson, J. Chem. Phys. 2000, 113, 9978.
- [8] X. Long, G. X. Li, Z. L. Wang, H. Y. Zhu, T. Zhang, S. Xiao, W. Y. Guo, S. H. Yang, J. Am. Chem. Soc., 2015, 137, 11900.
- [9] D. Y. Wang, M. Gong, H. L. Chou, C. J. Pan, H. A. Chen, Y. Wu, M. C. Lin, M. Guan, J.
- Yang, C. W. Chen, Y. L. Wang, B. J. Hwang, C. C. Chen, H. J. Dai, J. Am. Chem. Soc., 2015, 137, 1587.
- [10] H. C. Zhang, Y. J. Li, T. H. Xu, J. B. Wang, Z. Y. Huo, P. B. Wan, X. M. Sun, J. Mater. Chem. A, 2015, 3, 15020.
- [11] Z. Y. Jin, P. P. Li, X. Huang, G. F. Zeng, Y. Jin, B. Z. Zheng, D. Xiao, J. Mater. Chem. A, 2014, 2, 18593.
- [12] M. S. Faber, M. A. Lukowski, Q. Ding, N. S. Kaiser, S. Jin, J. Phys. Chem. C, 2014, 118,

21347.

- [13] A. L. Lu, Y. Z. Chen, H. Y. Li, A. Dowd, M. B. Cortie, Q. S. Xie, H. Z. Guo, Q. Q. Qi, D. L.Peng, Int. J. Hydrogen Energ., 2014, 39, 18919.
- [14] J. H. Hao, W. S. Yang, Z. Zhang, J. L. Tang, Nanoscale, 2015, 7, 11055.
- [15] L. Yang, X. L. Wu, X. S. Zhu, C. Y. He, M. Meng, Z. X. Gan, P. K. Chu, Appl. Surf. Sci., 2015, 341, 149.
- [16] F. Li, L. Zhang, J. Li, X. Q. Lin, X. Z. Li, Y. Y. Fang, J. W. Huang, W. Z. Li, M. Tian, J. Jin,
- R. Li, J. Power Sources, 2015, 292, 15.