Electronic Supplementary Information (ESI)

Synthesis of 1T-MoSe₂ ultrathin nanosheets with an expanded interlayer spacing of 1.17 nm for efficient hydrogen evolution reaction

Miao Jiang,^{a1} Junjun Zhang,^{bc1} Meihui Wu,^a Wenjing Jian,^a Hongtao Xue,^b Tsz-Wai

Ng,^b Chun-Sing Lee*^b and Jun Xu*^a

^aSchool of Electronic Science & Applied Physics, Hefei University of Technology, Hefei, 230009, People's Republic of China

^bCenter of Super-Diamond and Advanced Films (COSDAF), and Department of

Physics and Materials Sciences, City University of Hong Kong, Hong Kong SAR,

People's Republic of China

^cDepartment of Materials Science and Engineering, South University of Science and

Technology of China, Shenzhen, 518055, People's Republic of China

¹The authors contributed equally.

*Corresponding authors: <u>apjunxu@hfut.edu.cn</u> (J. Xu), <u>apcslee@cityu.edu.hk</u> (C.-S. Lee)

Experimental

Synthesis

0.4 mmol of MoCl₅ and 0.8 mmol of SeO₂ powders were added into 25 mL of octylamine in a Teflon-lined autoclave (50 mL). After the solution was stirred for several minutes, the autoclave was sealed and kept in an oven at 180 °C for 6-12 h, and then cooled down to room temperature. The product was collected by centrifugation and washed with absolute ethanol and distilled water several times, and vacuum-dried. 2H-MoSe₂ was prepared by annealing the as-prepared sample at 300-400 °C in an Ar/H₂ (5% H₂) flow.

Characterization

Structures, morphologies and compositions of the samples were characterized with X-ray diffraction (XRD) (Rigaku D/MAX2500V, Cu Kα radiation), scanning electron microscopy (SEM) (Philips XL30 FEG), transmission electron microscopy (TEM) (Philips CM 20 FEG or JEOL JEM-2100F, 200 kV), Raman spectroscopy (Lab RAM HR, 532 nm excitation), X-ray photoelectron spectroscopy (XPS) (VG ESCALAB 220i-XL, Al Kα), and thermogravimetric (TG) analysis (Mettler Toledo TGA-DSC-1).

Electrochemical Measurements

Electrochemical measurement was performed in a standard three-electrode configuration on an electrochemical workstation (CHI 660E). The three-electrode configuration contains a glassy-carbon electrode with the MoSe₂

electrocatalysts as the working electrode, a saturated calomel electrode (SCE) as the reference electrode, and a Pt foil as the counter electrode. Typically, 10 mg of the MoSe₂ electrocatalysts was added in a mixture of 1600 μ L of DI water, 400 μ L of ethanol, 160 μ L of Nafion solution (5 wt%). The mixture was vigorously sonicated for about 30 min to form a homogeneous ink solution. 5 μ L of the ink was loaded onto a glassy-carbon electrode with a diameter of 3 mm, and dried at room temperature. The loading density of the catalysts is about 0.32 mg cm⁻². A 0.5 M H₂SO₄ solution was used as electrolyte and degassed by bubbling pure N₂ for 30 min. Linear sweep voltammetry was carried out at an scan rate of 5 mV s⁻¹ for the polarization curves. All of the potentials were carefully calibrated to a reversible hydrogen electrode (RHE).

Fig. S1 HRTEM image of the as-prepared MoSe₂ flower-like assemblies in the internal area, showing that the nanosheets contain about 3-7 monolayers.

Fig. S2 TG analysis curves of (i) the as-prepared $MoSe_2$ sample and (ii) the $MoSe_2$ sample annealed at 300 °C. The larger weight loss in curve (i) is resulted from evaporation of octylamine molecules.

Fig. S3 EDX spectrum of the as-prepared $MoSe_2$ sample.

Fig. S4 HRTEM image of the MoSe₂ sample after annealing at 300 °C.

Fig. S5 (a) Cycling voltammetry (CV) curves of the as-prepared 1T-MoSe₂ electrocatalyst at scan rates from 20 to 100 mV s⁻¹ in the region of 0.194-0.294 V vs. RHE, (b) CV curves of the annealed 2H-MoSe₂ electrocatalyst at scan rates from 20 to 100 mV s⁻¹, (c) The differences in current density variation ($\Delta J = \frac{1}{2}(J_a - J_c)$) at 0.244 V vs. RHE plotted against scan rate fitted to a linear regression for estimation of C_{dl}.

Fig. S6 (a) Polarization curves of the as-prepared 1T-MoSe₂ electrocatalyst, revealing that negligible degradation of HER activity after 3000 CV cycles. (b) Controlled potential electrolysis result of the as-prepared 1T-MoSe₂ sample at -0.20 V (vs RHE).

		Onset	Tafel slope	Overpotential	
No.	Samples	potential	(mV per	at 10 mA cm ^{-2}	References
		(V vs. RHE)	decade)	(V vs. RHE)	
1	Interlayer-expanded 1T-MoSe ₂ nanosheets	0.060	78	0.179	This work
2	Exfoliated 1T- MoSe ₂ nanosheets	~0.2	82	0.350	Chem. Commun., 2015, 51, 8450–8453
3	MoSe ₂ film with vertically aligned layers	~0.2	105-120	NA	Nano Lett., 2013, 13, 1341–1347
4	Hierarchical ultrathin MoSe _{2-x} nanosheets	0.17	98	~0.28	Nanoscale, 2014, 6, 11046–11051
5	MoSe ₂ nanosheets	~0.12	45	0.181	ACS Catal., 2015, 5, 2213– 2219
6	MoSe ₂ porous microspheres	0.077	56	~0.125	Nano Res., 2015, 8, 1108– 1115
7	Monolayered MoSe ₂ nanosheets	~0.2	134	0.303	Nanoscale, 2015, 7, 10490–10497
8	S-doped MoSe ₂ nanosheets	0.09	60	~0.10	J. Mater. Chem. A, 2014, 2, 5597– 5601
	Pure MoSe ₂ nanosheets	0.2	106	~0.22	
9	S-doped MoSe _{2-x} nanosheets	~0.14	68	~0.21	Inorg. Chem. Front., 2015, 2, 931–937
	S-doped MoSe _{2-x} nanotubes	~0.15	91	~0.23	
	MoSe ₂ nanocaterpillars	~0.18	119	~0.28	
10	MoSe ₂ /rGO hybrid nanostructures	0.125	67	~0.19	J. Mater. Chem. A, 2015, 3, 19706–19710
	Pure MoSe ₂ nanoflowers	0.223	103	~0.38	
11	MoSe ₂ /graphene hybrid nanosheets	0.05	69	~0.15	J. Mater. Chem. A, 2014, 2, 360– 364
	Pure MoSe ₂ nanosheets	0.15	101	~0.28	
12	Vertical aligned MoSe ₂ nanosheets on carbon fiber paper	~0.16	77.4	0.25	Nano Lett., 2013, 13, 3426–3433
13	Epitaxial MoSe ₂ –NiSe nanohybrids	0.15	56	0.21	Chem. Mater. 2016, 28, 1838–1846
	Pure MoSe ₂ nanosheets	0.17	95	~0.28	
14	Few-layer MoSe ₂ grown on SnO ₂ nanotubes	0.11	51	0.174	J. Mater. Chem. A, 2015, 3, 16263–16271

Table S1 Recent advance of HER perormance of MoSe₂-based catalysts.