Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Free-standing NiV₂S₄ nanosheet arrays on 3D Ni framework via anion exchange

reaction as a novel electrode for asymmetric supercapacitor applications

Rudra Kumar, Prabhakar Rai*, Ashutosh Sharma*

Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur

208016, India

*E-mail: prkrai@iitk.ac.in, ashutos@iitk.ac.in

Figure S1. SEM, elemental mapping, and EDX spectrum of Ni₃(VO₄)₂ nanosheet arrays.

Figure S2. SEM, elemental mapping, and EDX spectrum of NiV_2S_4 nanosheet arrays.

Figure S3. XRD profile of as synthesized NiV_2S_4 nanosheet arrays along with curve from standard PDF card.

Figure S4. XPS spectra of $Ni_3(VO_4)_2$ nanosheet arrays; a) survay, b) Ni, c) V and d) O.

Figure S5. BET surface area and pore size distribution of (a) $Ni_3(VO_4)_2$ and (b) NiV_2S_4 nanosheet arrays.

Figure S7. GCD curve of Ni₃(VO₄)₂ nanosheet arrays synthesized at different times.

Figure S8. (a) Nyquist plot (inset shows high frequency region) and (b) I-V curve measurement of NiV_2S_4 and $Ni_3(VO_4)_2$ nanosheet arrays.

Figure S9. Long term cycling stability of NiV₂S₄ nanosheet array at 50 mVs⁻¹.

Figure S10. Rate capability of NiV_2S_4 nanosheet array.

Figure S11. Cycling performance of $Ni_3(VO_4)_2$ nanosheet array at (a) 10 mAcm⁻² current density for 2000 cycles and (b) 5 mA.cm⁻² for 500 cycles .

Figure S12. SEM images of (a) $Ni_3(VO_4)_2$, (b) NiV_2S_4 , and (c) EIS of NiV_2S_4 after cycling performance at 10 mAcm⁻² and 30 mAcm⁻² current density, respectively for 2000 cycles.

Figure S13. EIS of NiV_2S_4 after cycling performance at 30 mAcm⁻² current density for 2000 cycles.

Figure S14. (a) CV curves at different scan rates (5-50 mVs⁻¹), (b) GCD curves at different current densities (1-5 Ag⁻¹) and c) Variation of specific capacity with respect to different current densities for AC.

Figure S15: CV of NiV₂S₄ //AC asymmetric supercapacitor at 10 mVs⁻¹ at different potential window (1- 1.6 V).

Table S1. Comperative study of different asymmetric supercapacitor performance reported in
 literature with respect to our electrode.

Asymmetric Supercapacitor	Voltage	Energy	Power	Cyclic	Ref No
	(V)	Density	Density	Stability	
		(Whkg ⁻¹)	(Wkg ⁻¹)		
Ni-Co-S nanosheet	1.8	60	1800	90.1% (10,000)	1
arrays//graphene					
NiCo ₂ S ₄ nanotube arrays/Ni	1.6	16.6	2350	92% (5000)	2
foam//RGO					
Ni ₃ (VO ₄) ₂ //AC	1.6	25.3	240	92% (1000)	3
$3D Ni_3S_2$ nanosheet arrays on	1.6	34.6	150.4	85.7 % (1000)	4
Ni foam//AC					
NiCo ₂ S ₄ @Ni ₃ V ₂ O ₈ on Ni	1.6	42.7	200	90% (5000)	5
foam//AC					
NiCo ₂ S ₄ //AC	1.5	28.3	245	91.7% (5000)	6

Ni(OH) ₂ /graphene//graphene	1.6	77.8	175	94%(3000)	7
Co ₉ S ₈ nanoflakes//AC	1.6	31.4	200	90% (5000)	8
Core-shell NiCo ₂ S ₄ //C	1.6	22.8	160		9
Hollow hetero Ni ₇ S ₆ /Co ₃ S ₄	1.5	31	180	86% (5000)	10
nanoboxes//AC					
rGO-Ni ₃ S ₂ //AC	1.6	37.19	399.9	85.6% (5000)	11
Ni@rGO-Co ₃ S ₄ //	1.3	55.16	965	96.2 % (3000)	12
Ni@rGO-Ni ₃ S ₂					
Capsule-like porous hollow	1.6	42.7	190.8		13
Ni _{1.77} Co _{1.23} S ₄ // AC					
Ni–Co sulphide nanowires//AC	1.8	25	447	73.1% (3000)	14
NiV ₂ S ₄ //AC	1.6	45.2	240	90.7% (1000)	This Work

References

- 1. W. Chen, C. Xia and H. N. Alshareef, ACS Nano, 2014, 8, 9531-9541.
- H. Chen, J. Jiang, L. Zhang, D. Xia, Y. Zhao, D. Guo, T. Qi and H. Wan, *J. Power Sources*, 2014, 254, 249-257.
- 3. R. Kumar, P. Rai and A. Sharma, J. Mater. Chem. A, 2016, 4, 9822-9831.
- 4. H. Huo, Y. Zhao and C. Xu, J. Mater. Chem. A, 2014, 2, 15111-15117.
- L. Niu, Y. Wang, F. Ruan, C. Shen, S. Shan, M. Xu, Z. Sun, C. Li, X. Liu and Y. Gong, *J. Mater. Chem. A*, 2016, 4, 5669-5677.
- Y. Zhu, Z. Wu, M. Jing, X. Yang, W. Song and X. Ji, J. Power Sources, 2015, 273, 584-590.
- 7. J. Yan, Q. Wang, T. Wei and Z. C. Fan, *Adv. Energy Mater.*, 2014, 4, 1300816.
- R. B. Rakhi, N. A. Alhebshi, D. H. Anjum and H. N. Alshareef, *J. Mater. Chem. A*, 2014, 2, 16190-16198.

- W. Kong, C. Lu, W. Zhang, J. Pu and Z. Wang, J. Mater. Chem. A, 2015, 3, 12452-12460.
- H. Hua, S. Liu, Z. Chen, R. Bao, Y. Shi, L. Hou, G. Pang, K. N. Hui, X. Zhang and C. Yuan, *Sci. Rep.*, 2016, 6, 20973.
- H. Lin, F. Liu, X. Wang, Y. Ai, Z. Yao, L. Chu, S. Han and X. Zhuang, *Electrochim. Acta*, 2016, **191**, 705-715.
- 12. D. Ghosh and C. K. Das, ACS Appl. Mater. Interface, 2015, 7, 1122-1131.
- Y. Tang, S. Chen, S. Mu, T. Chen, Y. Qiao, S. Yu and F. Gao, ACS Appl. Mater. Interface, 2016, 8, 9721-9732.
- Y. Li, L. Cao, L. Qiao, M. Zhou, Y. Yang, P. Xiao and Y. Zhang, J. Mater. Chem. A, 2014, 2, 6540-6548.