Electronic Supplementary Information

A stability study of polymer solar cells using conjugated polymers with different donor or acceptor side chain patterns

Ilona M. Heckler,^a Jurgen Kesters,^b Maxime Defour,^c Huguette Penxten,^b Bruno Van Mele,^c Wouter

Maes^b and Eva Bundgaard^{*a}

^a Technical University of Denmark, Department of Energy Conversion and Storage, Frederiksborgvej 399, 4000 Roskilde, Denmark.

^b Hasselt University, Institute for Materials Research (IMO-IMOMEC), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan 1 - Building D, 3590 Diepenbeek.

^c Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussels (VUB), Pleinlaan 2, 1050 Brussels, Belgium. *corresponding author: evbu@dtu.dk

Table of contents

1.	Additional information to the synthesized compounds	S2
2.	Additional information to polymer characterization	S10
3.	Additional information to device preparation and characterization	S12
4.	Additional information to stability testing	S15

1. Additional information to the synthesized compounds

Scheme S1. Synthetic procedures yielding monomers *1a–c* and *3a–b*.

Fig. S1.1¹H NMR spectrum of compound 1b in CDCl₃.

P4b P4a P3b P3a P2b 4.0 3.5 f1 (ppm) 3.0 4.5 2.5 P2a P1

2. Additional information to polymer characterization

9.5

9.0

8.5

8.0

7.5

7.0 6.5

6.0

5.5

5.0 4.5 f1 (ppm) Fig. S1.16 ¹H NMR spectra of P1-P4b in CDCl₃.

4.0 3.5 3.0 2.5

2.0 1.5

1.0

0.5 0.0

Fig. S2. TGA profiles for polymers P1-P4b.

Fig. S3. RHC heating profiles, obtained at 500 K/min after cooling at 20 K/min (2nd heating), for polymers **P1–P4b** (curves shifted vertically for clarity).

3. Additional information to device preparation and characterization

Table S1. Averaged current-voltage (I-V) parameters for the solvent (and fullerene) screening of SC PSCs based on **P1**.

Active layer ^a	Solvent	Voc ^c	Jsc ^c	FF ^c	PCE (best) ^c
P1 :PC ₆₁ BM	ODCB ^b	0.76	8.90	53	3.59 (3.84)
P1 :PC ₆₁ BM	CF^b	0.75	9.74	61	4.50 (5.27)
P1 :PC ₇₁ BM	ODCB ^b	0.74	10.70	56	4.45 (4.60)
P1 :PC ₇₁ BM	CF^b	0.75	9.59	56	3.98 (4.26)

^{*a*} Polymer solar cells prepared by spin-coating with a polymer:fullerene ratio of 1:2. ^{*b*} ODCB = *o*dichlorobenzene, CF = chloroform. ^{*c*} Open-circuit voltage (in V), short-circuit current density (in mA/cm²), fill factor (in %), power conversion efficiency (average over 4 devices, in %).

Table S2. Averaged current-voltage (I-V) parameters for PSCs based on **P1**:PC₆₁BM, roll coated from different solvents and using different polymer:PC₆₁BM ratios and processing temperatures.

Solvent ^a	P1 :PC ₆₁ BM ^b	T ^c	d^d	Voc ^e	Jsc ^e	FF^e	PCE (best) ^e
ODCB	1:2	60	450	0.70	5.68	57	2.07 (2.26)
ODCB	1:2	80	450	0.70	5.23	61	2.79 (2.81)
ODCB	1:2	70	450	0.71	7.59	61	3.07 (3.31)
ODCB	1:1.5	70	450	0.71	7.22	62	2.95 (3.15)
ODCB	1:1	70	450	0.69	6.68	56	2.34 (2.59)
CF	1:2	70	450	ſ	ſ	ſ	ſ
CB/3%CN	1:2	70	450	0.72	5.71	61	2.46 (2.51)
ODCB/CB 4/1	1:2	70	450	0.73	7.79	60	3.43 (3.60)
ODCB/CB 4/1	1:2	70	390	0.72	7.46	62	3.34 (3.49)

^{*a*} Ortho-dichlorobenzene (ODCB), chloroform (CF), chlorobenzene (CB), 2-chloronaphthalene (CN). ^{*b*} Donor:acceptor ratio of the photoactive layer blend. ^{*c*} Processing temperature (°C). ^{*d*} Active layer thickness (in nm) ^{*e*} Open-circuit voltage (in V), short-circuit current density (in mA/cm²), fill factor (in %), power conversion efficiency (average over 5-6 devices, in %). ^{*f*} No *I-V* characteristics could be obtained due to an inhomogeneous photoactive layer.

Table S3. Photographs of different roll-coated polymer: PC₆₁BM films using different solvent ratios.^a

^{*a*} Films were coated at 70 °C with a PAL thickness of 450 nm (polymer:PC₆₁BM ratio of 1:2, 40 mg/mL), the scale bar of the pictures: the distance between two silver electrode fingers is 1.0 mm. ^{*b*}Ortho-dichlorobenzene (ODCB)/chlorobenzene (CB) in different ratios. ^{*c*} White spots on the film due to dewetting during the coating. ^{*d*} Coating was not performed due to the irrelevance of the experiment.

Polymer	ODCB/CB ^b	Voc ^c	Jsc ^c	FF ^c	PCE (best) ^c
P3a	4/1	0.72	7.64	57	3.13 (3.25)
РЗа	3/2	0.72	7.63	57	3.17 (3.38)
P4a	4/1	0.72	7.79	52	2.94 (3.11)
P4a	3/2	0.72	7.99	55	3.16 (3.41)

Table S4. Averaged current-voltage (I-V) parameters for RC PSCs based on P3a and P4a.^a

^{*a*} Polymer solar cells prepared by roll-coating with a polymer:PC₆₁BM ratio of 1:2 at 70 °C, 450 nm active layer thickness. ^{*b*} Ortho-dichlorobenzene (ODCB)/chlorobenzene (CB) ratio. ^{*c*} Open-circuit voltage (in V), short-circuit current density (in mA/cm²), fill factor (in %), power conversion efficiency (average over 5-6 devices, in %).

Fig. S4. I-V curves for the best RC (a) and SC (b) PSCs based on P1-P4b.

Fig. S5. EQE spectra for the best RC PSCs based on P1-P4b.

4. Additional information to stability testing

Fig. S6. Stability measurements of SC PSCs based on **P1–P4b** under thermal stress (85 °C; ISOS-D-2) in terms of the averaged absolute PCE (a) and normalized Voc (b), Jsc (c) and FF (d).

Fig. S7. Stability measurements of RC PSCs based on **P1–P4b** under constant sun irradiance (AM 1.5) in terms of the averaged PCE (a), Voc (b), Jsc (c) and FF (d) (no data could be gathered between 5 and 7 days due to a software error).