## SUPPLEMENTARY INFORMATION

### Sodium-ion storage performance of hierarchical-structured

### (Co1/3Fe2/3)Se2 nanofibers with fiber-in-tube nanostructures

#### Young Jun Hong, Jung Hyun Kim and Yun Chan Kang\*

Department of Materials Science and Engineering, Korea University, Anam-dong, Seongbuk-

gu, Seoul 136-713, Republic of Korea

E-mail: yckang@korea.ac.kr Fax: +82-2-928-3584; Tel: +82-2-3290-3268



Fig. S1 Morphologies of the electrospun fibers.



Fig. S2 XRD patterns of the CoFe<sub>2</sub>O<sub>4</sub>,  $(Co_{1/3}Fe_{2/3})Se_2$ , and  $(Co_{1/3}Fe_{2/3})Se_2$ -Se-C composite nanofibers.



Fig. S3. EDAX spectrum and composition of the  $(Co_{1/3}Fe_{2/3})Se_2$  nanofibers.



Fig. S4 XPS spectra of the hierarchical-structured (Co<sub>1/3</sub>Fe<sub>2/3</sub>)Se<sub>2</sub> nanofibers: (a) survey scan,
(b) XPS spectrum of Co 2*p*, (c) XPS spectrum of Fe 2*p*, (c) XPS spectrum of Se 2*d*.



**Fig. S5** The TG curves of the  $(Co_{1/3}Fe_{2/3})Se_2$ -Se-C composite nanofibers measured under (a) Ar and (b) air atmospheres.



Fig. S6. N<sub>2</sub> adsorption and desorption isotherms and BJH pore size distributions of the  $(Co_{1/3}Fe_{1/3})Se_2$  and  $(Co_{1/3}Fe_{1/3})Se_2$ -Se-C nanofibers.



Fig. S7 The cycling performances of the hierarchical-structured ( $Co_{1/3}Fe_{2/3}$ )Se<sub>2</sub> nanofibers at a high current density of 5 A g<sup>-1</sup>.



**Fig. S8** The sodium-ion storage performances of the  $CoFe_2O_4$  nanofibers with tube-in-tube structures: (a) cycling performances and (b) rate performances.



Fig. S9 SEM images of the (a)  $(Co_{1/3}Fe_{2/3})Se_2$  and (b)  $(Co_{1/3}Fe_{2/3})Se_2$ -Se-C sheets formed on glass substrate.

# Table S1. Sodium-ion storage properties of various metal chalcogenides and Sb materials.

| metal chalcogenides<br>& Sb materials                          | Synthesis                      | Electrochemical properties                                             | Capacity retention                                             | Ref  |
|----------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|------|
| Cu <sub>3</sub> P nanowire                                     | In situ growth & phosphidation | 134 mA h g <sup>-1</sup> after 260 cycles at 1.0 A g <sup>-1</sup>     | ~70 %                                                          | 3    |
| Tin phosphide                                                  | Ball milling                   | 718 mA h g <sup>-1</sup> after 50 cycles at 0.1 A g <sup>-1</sup>      | -                                                              | 4    |
| Flower-like hierarchical<br>Cu2NiSnS4 - rGO                    | Hydrothermal method            | 321 mA h g <sup>-1</sup> after 100 cycles at 0.05 A g <sup>-1</sup>    | -                                                              | 5    |
| Pyrite FeS <sub>2</sub>                                        | Hydrothermal method            | ~200 mA h g <sup>-1</sup> after 20,000 cycles at 1.0 A g <sup>-1</sup> | ~90 %                                                          | 13   |
|                                                                |                                | ~170 mA h g <sup>-1</sup> after 12,000 cycles at 20.0 A $g^{-1}$       | -                                                              |      |
| Vanadium sulfide on<br>reduced graphene oxide<br>layer         | Hydrothermal method            | ~241 mA h g <sup>-1</sup> after 50 cycles at 0.1 A g <sup>-1</sup>     | -                                                              | 14   |
| Nickel disulphide graphene<br>nanosheets composite             | Hydrothermal method            | 407 mA h g $^{-1}$ after 200 cycles at 0.087 A g $^{-1}$               | 77 %                                                           | 15   |
| MnS hollow microsphere                                         | Hydrothermal method            | 308 mA h g <sup>-1</sup> after 125 cycles at 0.1 A g <sup>-1</sup>     | 62 %                                                           | - 16 |
|                                                                |                                | 118 mA h g <sup>-1</sup> at 0.8 A g <sup>-1</sup>                      | rate test                                                      |      |
| Flower-like Sb <sub>2</sub> S <sub>3</sub>                     | Polyol reflux<br>process       | 641 mA h g <sup>-1</sup> after 100 cycles at 0.2 A g <sup>-1</sup>     | 94 %<br>(from the 50 <sup>th</sup> cycle)                      | 17   |
|                                                                |                                | 554.6 mA h g <sup>-1</sup> at 2.0 A g <sup>-1</sup>                    | rate test                                                      |      |
| MoS <sub>2</sub> /Graphene composite                           | Hydrothermal method            | ~306 mA h g $^{\text{-1}}$ after 100 cycles at 0.02 A g $^{\text{-1}}$ | 61.3 %                                                         | 18   |
| FeSe <sub>2</sub> microspheres                                 | Hydrothermal method            | 372 mA h g <sup>-1</sup> after 2000 cycles at 1.0 A g <sup>-1</sup>    | 89 %                                                           | 19   |
| SnSe/carbon nanocomposite                                      | Ball milling                   | 325 mA h g <sup>-1</sup> after 200 cycles at 0.5 A g <sup>-1</sup>     | 72.5 %                                                         | 22   |
| SnSe alloy                                                     | Ball milling                   | 707 mA h g <sup>-1</sup> after 50 cycles at 0.143 A g <sup>-1</sup>    | -                                                              | - 23 |
|                                                                |                                | ~350 mA h g <sup>-1</sup> at 0.77 A g <sup>-1</sup>                    | rate test                                                      |      |
| MoSe <sub>2</sub> yolk-shell<br>microsphere                    | Spray pyrolysis                | 433 mA h g $^{\text{-1}}$ after 50 cycles at 0.2 A g $^{\text{-1}}$    | 99 % (from the $2^{nd}$ cycle)                                 | 24   |
| SnSe<br>nanoplate                                              | Spray pyrolysis                | 558 mA h g <sup>-1</sup> after 50 cycles at 0.3 A g <sup>-1</sup>      | 100 %<br>(from the 2 <sup>nd</sup> cycle)                      | 25   |
|                                                                |                                | ~221 mA h g <sup>-1</sup> at 2.0 A g <sup>-1</sup>                     | rate test                                                      |      |
| NiSe <sub>2</sub> -rGO-C composite<br>nanofiber                | Electrospinning                | 468 mA h g $^{\text{-1}}$ after 100 cycles at 0.2 A g $^{\text{-1}}$   | -                                                              | 26   |
| Graphitic carbon-coated<br>FeSe <sub>2</sub>                   | Electrospinning                | 412 mA h g <sup>-1</sup> after 150 cycles at 1.0 A g <sup>-1</sup>     | 82 % (from the $2^{nd}$ cycle)                                 | 27   |
| Ultrathin MoS <sub>2</sub> embedded<br>in the carbon nanofiber | Electrospinning                | 484 mA h g <sup>-1</sup> after 100 cycles at 1.0 A g <sup>-1</sup>     |                                                                | 28   |
|                                                                |                                | 253 mA h g <sup>-1</sup> after 100 cycles at 10.0 A g <sup>-1</sup>    | -                                                              |      |
| CoSe <sub>x</sub> -rGO composite                               | Spray pyrolysis                | 420 mA h g <sup>-1</sup> after 50 cycles at 0.3 A g <sup>-1</sup>      | $\frac{80 \%}{(\text{from the } 2^{\text{nd}} \text{ cycle})}$ | 29   |
| Nanoporous-Sb                                                  | Melt-spun                      | 574 mA h g <sup>-1</sup> after 200 cycles at 0.1 A g <sup>-1</sup>     | -                                                              | 48   |

| Highly ordered Sb<br>nanorod array                                                         | Nanoimprinted<br>AAO templating<br>technique | 521 mA h g $^{-1}$ after 250 cycles at 0.2 A g $^{-1}$                 | ~84 %                                                           | 49            |
|--------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------|---------------|
| Porous hollow Sb<br>microspheres                                                           | Replacement reaction                         | 617 mA h g <sup>-1</sup> after 100 cycles at 0.1 A g <sup>-1</sup>     | 97 %                                                            | - 50          |
|                                                                                            |                                              | 313 mA h g <sup>-1</sup> at 3.2 A g <sup>-1</sup>                      | rate test                                                       |               |
| Sb/C fibers                                                                                | Electrospinning                              | 350 mA h g <sup>-1</sup> after 300 cycles at 0.1 A g <sup>-1</sup>     | 83 %                                                            | 51            |
| Sb–C nanofibers                                                                            | Electrospinning                              | 450 mA h g <sup>-1</sup> after 400 cycles at 0.1 A g <sup>-1</sup>     | > 90 %                                                          | 52            |
| Monodisperse Sb<br>nanocrystals                                                            | Colloidal synthesis                          | 580 mA h g <sup>-1</sup> after 100 cycles at 0.66 A g <sup>-1</sup>    | > 90 %                                                          | 53            |
| Sb/MWCNT<br>nanocomposite                                                                  | Wet milled synthesis                         | 387 mA h g $^{\text{-1}}$ after 120 cycles at 0.2 A g $^{\text{-1}}$   | 76 %                                                            | 54            |
| rGO/nano Sb composite                                                                      | Reduction method                             | 598 mA h g $^{-1}$ after 50 cycles at 0.131 A g $^{-1}$                | 93 %                                                            | - 55          |
|                                                                                            |                                              | 100 mA h g <sup>-1</sup> at 6.6 A g <sup>-1</sup>                      | rate test                                                       |               |
| Antimony/multilayer<br>graphene hybrid                                                     | Confined vapor deposition method             | 405 mA h g $^{\text{-1}}$ after 200 cycles at 0.1 A g $^{\text{-1}}$   | 90 %                                                            | 56            |
| Antimony hollow<br>nanospheres                                                             | Galvanic<br>replacementt                     | 622.2 mA h g $^{\text{-1}}$ after 50 cycles at 0.05 A g $^{\text{-1}}$ | -                                                               | - 57          |
|                                                                                            |                                              | 315 mA h g <sup>-1</sup> at 1.6 A g <sup>-1</sup>                      | rate test                                                       |               |
| Sb@C coaxial nanotubes                                                                     | Thermal-reduction<br>strategy                | 407 mA h g <sup>-1</sup> after 240 cycles at 0.1 A g <sup>-1</sup>     | -                                                               | - 58          |
|                                                                                            |                                              | 240 mA h g $^{\text{-1}}$ after 2000 cycles at 1.0 A g $^{\text{-1}}$  | -                                                               |               |
| Ultrafine Sb nanocrystals<br>embedded in carbon<br>microspheres                            | One-pot spray<br>pyrolysis                   | 372 mA h g <sup>-1</sup> after 100 cycles at 0.3 A g <sup>-1</sup>     | 90 %<br>(from the 2 <sup>nd</sup> cycle)                        | 59            |
| Hierarchical-structured<br>(Co <sub>1/3</sub> Fe <sub>2/3</sub> )Se <sub>2</sub> nanofiber | Electrospinning                              | 512 mA h g <sup>-1</sup> after 60 cycles at 0.3 A g <sup>-1</sup>      | $\frac{100 \%}{(\text{from the } 2^{\text{nd}} \text{ cycle})}$ | This<br>study |
|                                                                                            |                                              | 441 mA h g <sup>-1</sup> after 100 cycles at 5.0 A g <sup>-1</sup>     | 96 %<br>(from the 2 <sup>nd</sup> cycle)                        |               |