Supplementary Information

for

Nanoporous $(Pt_{1-x}Fe_x)_3Al$ intermetallic compounds for much enhanced oxygen electroreduction catalysis

Tuo Cheng, Xing-You Lang,* Gao-Feng Han, Rui-Qi Yao, Zi Wen, Qing Jiang*

Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun

130022, China

Figure S1. X-ray diffraction (XRD) pattern of precursor $Pt_{10}Fe_2Al_{88}$ alloy ribbons.

Figure S2. Typically top-view SEM image of the dealloyed NP $(Pt_{1-x}Fe_x)_3Al/Pt$.

Figure S3. Nitrogen adsorption/desorption isotherm of NP $(Pt_{1-x}Fe_x)_3Al/Pt$. (Inset shows the pore size distribution.

Figure S4. XPS survey spectrum for the as-dealloyed NP $(Pt_{1-x}Fe_x)_3Al/Pt$.

Figure S5. EDS of the as-dealloyed NP (Pt_{1-x}Fe_x)₃Al/Pt particles.

Figure S6. High-resolution XPS spectra of Pt 4*f* for NP $(Pt_{1-x}Fe_x)_3Al/Pt$, Pt₃Al/Pt and Pt/C nanocatalysts.

Figure S7. (a) TEM image and (b) EDS of NP $Pt_{46}Fe_{54}/Pt/C$ particles, which are fabricated by dealloying $Pt_{28}Fe_{72}/C$ precursor.

Figure S8. CV curves of $(Pt_{1-x}Fe_x)_3Al/Pt$ signifying the difference in surface coverage by H_{upd} and OH_{ad} . ECSA of the NP $(Pt_{1-x}Fe_x)_3Al/Pt$ are determined by integrated charge of adsorbed CO electro-oxidation curves.

Figure S9. ORR polarization curves of NP $(Pt_{1-x}Fe_x)_3Al/Pt$ in an O₂-saturated 0.1 M HClO₄ solutions at room temperature and a scan rate of 10 mV s⁻¹ with different rotation speeds.

Figure S10. H_2O_2 yield of NP ($Pt_{1-x}Fe_x$)₃Al/Pt and Pt/C catalyst. Inset: Electron transfer number as functions of the electrode potential.

Figure S11. ORR polarization curves for NP $(Pt_{1-x}Fe_x)_3Al/Pt$ and Pt/C in O₂-purged 0.1 M KOH solution at room temperature with a scan rate of 10 mV s⁻¹ and a rotation rate of 1600 r.p.m..

Figure S12. (a) CV curves for the 40,000-cycle stability test of Pt/C nanocatalyst in N_2 -purged 0.1 M HClO₄ at 50 mV s⁻¹ within a potential window of 0.6 to 1.0 V. (b) ORR polarization curves for the Pt/C nanocatalyst in a long-term cycling test of 40,000 potential cycles, collected in O₂-saturated 0.1 M HClO₄ aqueous electrolyte at room temperature with a rotation rate of 1600 r.m.p. and a scan rate of 10 mV s⁻¹.

Figure S13. Evolution of half-wave potential for NP $(Pt_{1-x}Fe_x)_3Al/Pt$ and Pt/C nanocatalysts as a function of cycle number.

Figure S14. Normalized Current-time curves of NP $(Pt_{1-x}Fe_x)_3Al/Pt$ and Pt/C catalysts in O₂-saturated 0.1 M HClO₄ solution at 0.9 V.