
Supporting Information

Experimental and related aspects

Characterization:

The synthesized materials were characterized by different techniques. X-ray diffraction (XRD) data of all samples were collected by the X'Pert PRO PANanalytical equipment (Bragg-Brentano geometry with automatic divergence slits, position sensitive detector, continuous mode, room temperature, Cu-Ka radiation, Ni filter. The powder samples were dropped onto silicon wafer with grease, and measured at the same equipment (5-80°, at a step of 0.0197°, with accumulation time 200 s per step). The morphology and porous nature characterized through scanning electron microscopy (FESEM-FEI Nova-Nano SEM-600) and transmission electron microscope (JEOL JEM-3010 with accelerating voltage at 300 kV). The Raman spectra were recorded in backscattering arrangement, using 532 nm laser excitation using 6 mW laser power. Elemental analyses were carried out using a Thermo Scientific Flash 2000 CHN analyzer. X-ray photoelectron spectroscopy (XPS) was performed on a PHI 5000 Versa Probe II scanning XPS microprobe from Physical Electronics, using X-ray radiation from an Al source equipped with a monochromator. Spectra were collected and evaluated with the MultiPak (ULVAC-PHI, Inc.) software. All binding energies were referenced to the C1s peak at 284.8 eV. Adsorption studies of N₂ (77 K) of all samples were carried out using MICROMERITICS analyzer, outgassed at 423 K under high vacuum. The Raman spectrum of respective sample were collected through instrument, DXR Raman (Thermo, USA); laser wavelength: 633 nm, laser power on sample: 2mW, exposition time: 5s, 32 spectra were averaged at each spot to obtain one data point. UV-Vis diffuse reflectance spectra were recorded on samples with or without dilution in BaSO₄ using a Harrick praying mantis diffuse reflectance accessory mounted in a Perkin Elmer Lambda 650 UV-Vis spectrophotometer. The photo catalyst powder was well ground with of BaSO₄ and spread onto the sampling plate prior to the measurement. The background reflectance of BaSO₄ (reference) was measured before. The Kubelka-Munk function $F(R_{\infty})$ was calculated as $F(R_{\infty}) = (1 - R_{\infty})^2 / 2R_{\infty}$, where R_{∞} is diffuse reflectance of the sample relative to the reflectance of a standard according to the Kubelka-Munk theory.

Scheme S1. Flow chart, detailed synthetic methodology of composite Cu₂O nanoparticles anchored on graphitic nitrogen-rich carbon matrix.

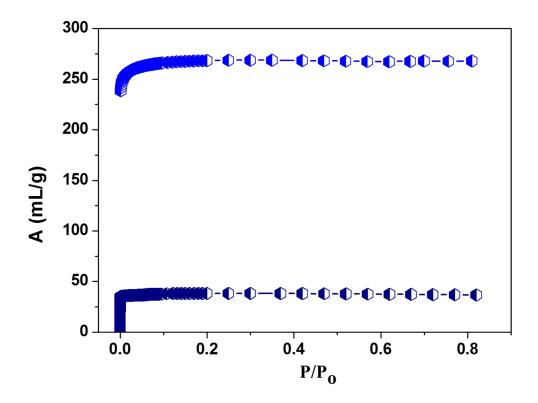
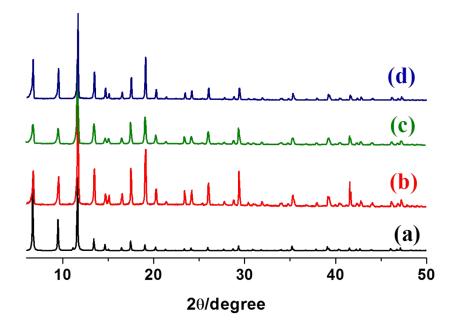



Fig S1. Nitrogen adsorption isotherms at 77 K of [Cu₃ (BTC)₂] and [Cu₃(BTC)₂@Urea]

Fig S2. Powder XRD patterns of (a) simulated pattern $[Cu_3(BTC)_2](1)$ (b) assynthesized $[Cu_3(BTC)_2](1)$ (c) desolvated $[Cu_3(BTC)_2](1')$ (d) $[Cu_3(BTC)_2@Urea](2)$ and it reveals structural integrity after inclusion of urea molecules on desolvated MOF.

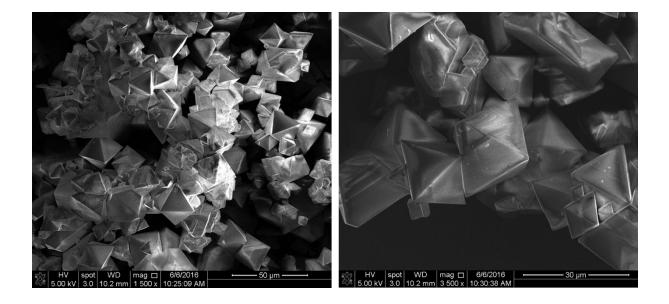


Fig S3. SEM images of $[Cu_3(BTC)_2]$ showing octahedron morphology crystals

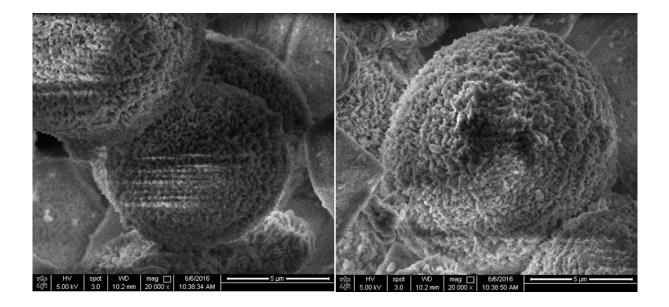


Fig S4. SEM images of [Cu₃(BTC)₂@Urea] composite reveals bundle of micron spheres.

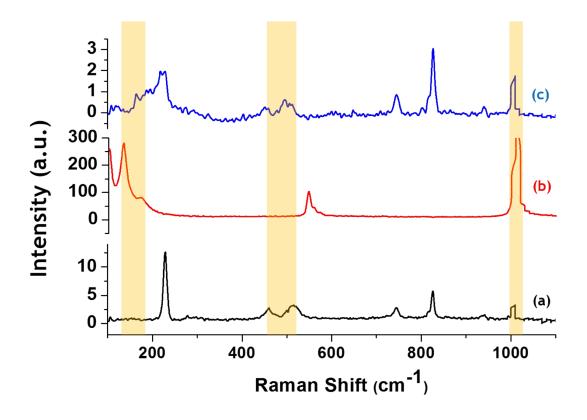


Fig S5. RAMAN spectrum (a) desolvated $[Cu_3(BTC)_2](1^{\circ})$ (b) Urea (c) hybrid $[Cu_3(BTC)_2@$ Urea] reveals an additional band at 459 cm-1 corresponding to Cu-N band.

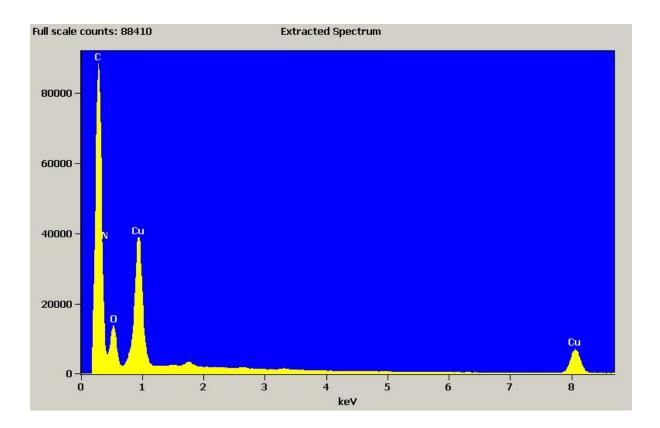


Fig S6a. The EDS spectra of resultant $Cu_2O@C_3N$ composite, showing presence of Cu, C, N and O.

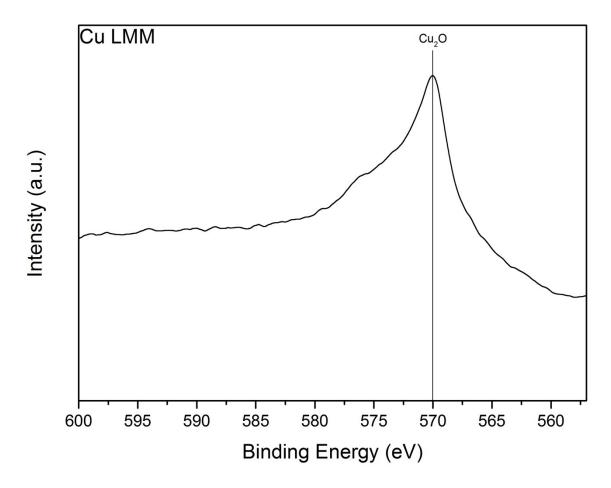


Fig S6b.Cu LMM Auger spectrum of resultant composite.

Cu is expected at the binding energy around 567.8 eV, while Cu₂O is located at 570.0 eV. The position and shape of the Cu LMM auger spectrum clearly proves the presence of Cu₂O. As referee suggested, this figure we provided in supporting information of revised manuscript. Referencies:

- (1) Thomas Waechtler et al., Copper Oxide Films Grown by Atomic Layer Deposition from Bis(tri-n-butylphosphane)copper(I)acetylacetonate on Ta, TaN, Ru, and SiO₂, *J. Electrochem.* Soc. 2009, volume 156, issue 6, H453-H459
- (2) Cu LMM spectra from http://www.xpsfitting.com/search/label/Copper (M.C. Biesinger, unpublished data (2013))

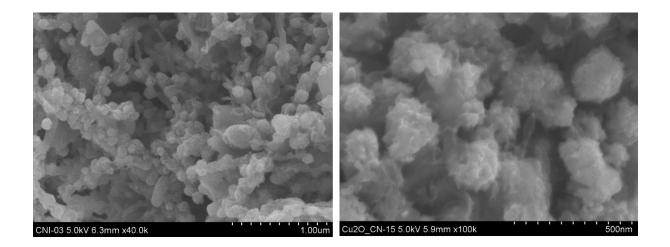


Fig S7a. FE-SEM image of $Cu_2O@C_3N$ composite, showing presence of bundle of nano sheets



Fig. 7b. enlarged pore size distribution calculated from NLDFT method of $Cu_2O@C_3N$

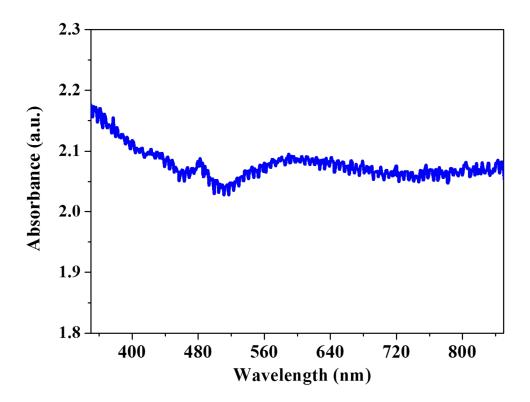
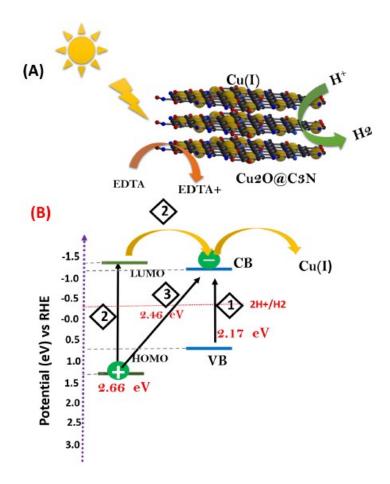



Fig S8. Uv-Vis diffuse spectra of Cu₂O@C₃N (band at 480 due instrumental error).

Fig.S9 (A) Schematic illustration of photocatalytic hydrogen production Cu₂O@C₃N (cuprous oxide nanoparticle with nitrogen rich carbon matrix) in water under visible light irradiation, where EDTA as sacrificial donor. (B) Irradiation of CNx-Cu₂O can result in photo indeced electron transfer by three distinct pathways, (i) Cu₂O bandgap excitation; (ii) excitation of CN_x (HOMO_{CNx}-LUMO_{CNx}), followed by electron transfer from LUMO_{CNx} into the conduction band of Cu₂O (CBcu₂O). (iii) Charge transfer excitation with direct optical electron transfer from HOMO_{CNx} to CBcu₂O. The CBcu₂O electrons generated through pathways 1 to 3 are then transferred *via* copper centres of Cu₂O

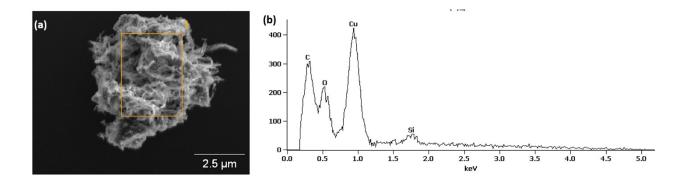
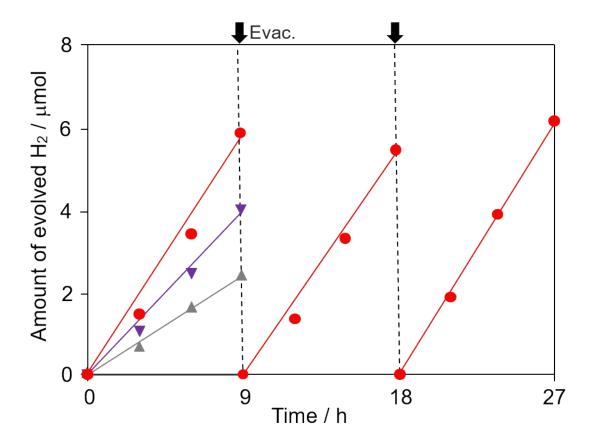



Fig S10. EDX spectra of carbonized sample 2, carbonized at 550 °C

Fig S11. EDX spectra of carbonized sample 2, carbonized at 700 °C

Fig S12. Comparison of photocatalytic H_2 Production of pyrolised composite $[Cu_3(BTC)_2@Urea]$ at different temperatures 450 (red line), 550 (violet line), 750 °C (grey line).

roduction							· - ·
S.No or Reference	Sample	CoCatalyst	Sacrificial Agent	Light Source	Hydrogen production (unit)	Reference photo catalyst	Enhancement and stability
1	g-C ₃ N ₄ by urea polymerization	Phenyl urea	TEOA Triethanolamine	300 W Xe lamp (λ > 420 nm)	535 µmol h-1	Pure g- C ₃ N ₄	9 times ~16h
2	Cu(OH) ₂ /g- C ₃ N ₄	Cu(OH)₂	methanol and water	300 W Xe lamp (λ > 400 nm)	48.7 µmol g ⁻¹ h ⁻¹	Cu/g-C ₃ N ₄	1.92 times >28 h
3	UiO-66/g- C₃N₄/P	UiO-66 Pt	Ascorbic acid	300 W Xe lamp (λ > 420 nm)	14.11x10 ⁻⁶ M h ⁻¹	g-C ₃ N ₄	NA
4	Au/g-C ₃ N ₄		ΤΕΟΑ	500 W HBO lamp (λ > 420 nm)	10.70 µmol h⁻¹	Pt/g-C₃N₄	4.65 >15 h
5	Ni(OH) ₂ /g- C ₃ N ₄	Ni(OH) ₂	ΤΕΟΑ	350 W Xe lamp with a 400 nm	7.60 µmol h⁻¹	Pure g- C ₃ N ₄	1.1 >12 h
6	Ni/NiO/g-C ₃ N ₄	Ni/NiO	TEOA	300 W Xe lamp with a 420 nm	10 µmol h⁻¹	Pure g- C ₃ N ₄	10 >16 h
7	Ag ₂ O/g-C ₃ N ₄	Ag₂O	TEOA	300 W Xe lamp with a 420 nm	32.88 µmol g⁻¹ h⁻¹	g-C ₃ N ₄	274 >8 h
8	C, N-TiO ₂ /g- C ₃ N ₄	C, N-TiO ₂	ΤΕΟΑ	300 W Xe lamp with a 400 nm	39.18 µmol g ⁻¹ h ⁻¹	C, N-TiO ₂	10.9 >32 h
9	Cu ₂ O/rGO	Pt/Cu2O	Methanol/H2O	150W Xe lamp with 400 nm	264.5 µmol H₂ h⁻¹	Cu ₂ O	3.5 NA
10	Cu ₂ O@g-C ₃ N ₄	-Pt	TEOA	300 W Xe lamp with a 420 nm	243.0 µmol/h/g	pure g- C ₃ N ₄	1.72 NA
11	Cu ₂ O/rGO	-	TEOA	300 W Xe lamp with a 420 nm	4.53 mmol/h/g	rGO	7.3
12 Present work	Cu ₂ O@C3N	-	EDTA	500 W Xe lamp with a 420 nm	17.6 µmol/g For 27 h	Pure Cu ₂ O	4 27h

Table S1. Phocatalytic Activity of carbon nitride, Cuprous oxide and its composites for hydrogen production

1. G.Zhang, X.A. Wang, J. Catal. 2013, 307, 246-253.

2. X.Zhou, Z.Luo, P. Tao, B.Jin, Z.Wu, Y. Huang, Mater. Chem. Phys. 2014, 143, 1462–1468.

3. R.Wang, L. Gu, J.Zhou, X. Liu, F. Teng, C. Li, Y.Shen, Y. Yuan Adv. Mater. Interfaces 2015, 2, 1500037.

- 4. Y.Di, X.Wang, A. Thomas, M. Antonietti, ChemCatChem 2010, 2, 834–838.
- 5. J.Yu, S.Wang, B. Cheng, Z.Lin, F. Huang, Catal. Sci. Technol. 2013, 3, 1782–1789.
- 6. G. Zhang, G. Li, X. Wang, ChemCatChem 2015, 7, 2864–2870.
- 7. M. Wu, J.M. Yan, X. W.Zhang, M. Zhao, Q. Jiang, J. Mater. Chem. A 2015, 3, 15710–15714
- 8. W.Chen, T.Y. Liu, T. Huang, X.H. Liu, G. R. Duan, X. J. Yang, M. S. Chen, RSC Adv. 2015, 5, 101214–101220,
- 9. P. D. Tran, S. K. Batabyal, S. S. Pramana, J. Barber, L. H. Wong and S. C. J. Loo, Nanoscale, 2012, 4, 3875–3878.
- 10. X. Chen, S. Shen, L. Guo and S. S. Mao, Chem. Rev., 2010, 110, 6503.
- 11. H. Li, X. Li, S. Kang, L. Qin, G. Li, J. Mu, Int. J. Hydrogen Energy. 2014, 24, 11578-11582.

Table S2. The carbonization of 2 at various temperatures and corresponding oxidation state and nitrogen amount.

Sample	Copper phase	Nitrogen Content (%)
[Cu ₃ (BTC) 2@Urea] -450	Cu ₂ O (cuprous oxide)	14
[Cu ₃ (BTC)2@Urea] -550	CuO (copper oxide)	0
[Cu ₃ (BTC)2@Urea] -700	Cu (copper metal)	0

Table S3. Photocatalytic Hydrog	gen production at different time intervals.
Table 55. Thorocatary de fry di 0g	, ch production at uniterent time miter vals.

Sample	Reaction time (h)	Total amount of H ₂ evolved(µmol)
Cu ₂ O@C ₃ N	3	1.6
	6	3.5
	9	5.9
Cu ₂ O@C ₃ N_2nd cycle	3	1.4
	6	3.3
	9	5.5
Cu ₂ O@C ₃ N _3rd cycle	3	1.9
	6	3.8
	9	6.2
Carbon nitride	9	2.8
Cuprous oxide	9	1.6
Cu ₃ (BTC) ₂ @Urea _550	3	1.2
	6	2.6
	9	4.1
Cu ₃ (BTC) ₂ @Urea _700	3	0.7
	6	1.7
	9	2.5