Supporting Information for

Scalable Synthesis of High-quality Transition Metal Dichalcogenide Nanosheets and Their Application as Sodium-Ion Battery Anodes

Jingwen Zhou^a, Jian Qin^a, Lichao Guo^a, Naiqin Zhao^{ab}, Chunsheng Shi^a, Enzuo Liu

 $^{a,b},$ Fang He a , Liying Ma $^{a},$ Jiajun Li a and Chunnian He $^{\ast ab}$

 ^a School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072, China.
 *E-mail: cnhe08@tju.edu.cn
 ^b Collaborative Innovation Center of Chemical Science and Engineering, Tianjin

300072, China

Figure S1. (a)-(b) Typical SEM images of the freeze-dried precursor gel consisting of $NH_2CSNH_2-(NH_4)_6W_{12}O_{39}$ -NaCl, revealing that 3D NaCl self-assembly was covered with the discontinuous thin films of $NH_2CSNH_2-(NH_4)_6W_{12}O_{39}$ complex during the freeze-drying process. (c)-(d) SEM images of these NaCl cubes coated with WS₂ nanosheets before washing away the templates, indicating that the 3D assembly was well preserved after the calcination process and WS₂ nanosheets were formed between the surfaces of adjacent NaCl particles.

Figure S2. (a) Low-magnified SEM image of the as-synthesized WS₂ nanosheets. (b)-(d) TEM images of the as-synthesized WS₂ nanosheets. (e) HRTEM image of the WS₂ nanosheets obtained from an experiment of higher ratio of NaCl to WS₂ precursor. (f) HRTEM image of the WS₂ nanosheets obtained from an experiment of lower ratio of NaCl to WS₂ precursor. (g) EDX spectrum of a specific area in which some typical WS₂ nanosheets were displayed.

Figure S3. (a) STEM image of an individual WS₂ nanosheet. (b) EDX element mapping of W and (c) EDX element mapping of S corresponding to the area in STEM image of (a).

Figure S4. XPS spectra of the as-synthesized WS_2 nanosheets: (a) W4f and W5p peaks, and (b) S2p peaks.

Figure S5. (a) XRD pattern and (b) Low-magnified SEM image of these disordered WS₂ blocks synthesized by CVD technique. (c) FE-SEM image of the surface of a typical WS₂ block.

Figure S6. XRD patterns and typical SEM images of the TMD nanosheets produced through the facile NaCl template-assisted CVD strategy: (a)(b) MoS₂, (c)(d) MoSe₂ and (e)(f) WSe₂, respectively.

Figure S7. (a) The photo illustrating a light-emitting diode application of the sodiumion battery cell even after 60 cycles at 0.1 A g^{-1} , where the as-synthesized WS₂ nanosheets coated Cu foil act as the working anode. Photos of the nineteen randomly twinkling light-emitting diodes at different times of (b) T=10s, (c) T=60s, (d) T=120s and (e) T=180s, respectively.

Figure S8. Cycling performance of WS_2 nanosheets electrodes at a current density of (a) 0.5 A g⁻¹ and (b) 1 A g⁻¹ for sodium-ion batteries, respectively.

Table S2. Kinetic parameters of the electrodes of WS_2 nanosheets and WS_2 blocks after the rate capability test obtained by fitting the EIS curves based on the corresponding equivalent circuit.

Samples	$R_{ m e}\left(\Omega ight)$	$R_{ m ct}\left(\Omega ight)$
WS ₂ nanosheets	5.74	80.6
WS ₂ blocks	4.90	203.7

Figure S9. Comparison of rate capability performance for the WS_2 nanosheets electrode with that of WS_2 -based sodium-ion battery anodes reported previously (to the best of our knowledge).

Table S1. Comparison of specific capacity and capacity retention at different current densities for the WS_2 nanosheets electrode with those of WS_2 -based and other representative TMDs-based sodium-ion battery anodes reported previously.

Materials	Synthesis method	Current density (A g ⁻¹)	Cycle number (N)	Specific capacity (mAh g ⁻¹)	Capacity retention (%)
WS ₂ nanosheets	In-situ chemical vapor	0.1	60	460.8	100
[this work]	deposition				
3D WS ₂ -rGO microspheres ^{S1}	VS ₂ -rGO spheres ^{S1} Spray pyrolysis		200	334	93
WS ₂ nanowires ^{S2}	Solvothermal & calcination	0.1	50	483.2	79.8
WS ₂ @graphene nanocomposites ^{S3}	Hydrothermal approach	0.02	500	329	71.5
WS _x /WO ₃ thorn- bush nanofiber ^{S4}	Electrospinning & post- thermal treatment	0.1	100	585	74
3D porous WS ₂ /C nanocomposite ^{S5}	Electrostatic spray deposition	0.5	300	210	84
MoS ₂ /C flowerlike nanospheres ^{S6}	Hydrothermal approach	0.67	300	400	76.2
MoS ₂ /Graphene composite paper ^{S7}	Vacuum filtration	0.025	20	218	82.3
Vine-like MoS ₂ fiber ^{S8}	Electrospinning	0.1	30	470	63.5
Micro-MoS ₂ ^{S9}	Solid state calcination	0.05	20	400	91
MoS ₂ nanoflowers ^{S10}	Hydrothermal approach	0.2	300	295	100
MoS ₂ /Graphene composite ^{S11}	Hydrothermal approach	0.02	100	380	54.3
MoS ₂ -graphene microspheres ^{S12}	Spray pyrolysis	0.2	50	480	88
Ultrathin MoS ₂ nanosheets ^{S13}	Ultrasonic exfoliation technique	0.32	100	251	78.4
MoSe ₂ nanoplates ^{S14}	Pyrolysis	0.042	50	369	71.9
FeSe ₂ microspheres	Hydrothermal approach	1	2000	372	84.2
FeS_2 nanocrystals ^{S16}	Solution-phase chemical synthesis	1	600	410	50

Core-shell NiSe/C nanospheres ^{S17}	Hydrothermal approach & calcination	0.1	100	280	70
CoSe _x -rGO composite ^{S18}	Spray pyrolysis	0.3	50	420	80
WSe ₂ /C composites ^{S19}	High energy ball milling & calcination	0.2	50	270	91.8

Figure S10. (a)(b) SEM and TEM images of the active materials after the electrode was discharged to 0.4 V at the initial cycle. Typical SEM images with different magnification times of the WS₂ electrodes which were soaked in DMC for 12 h after the electrode was discharged to (c)(d) 0.2 V, (e)(f) 0.005 V and then charged to (g)(h)

3.0 V during the first cycle.

Figure S11. (a)(b) SEM images at the different magnification times of the electrode of WS_2 nanosheets with being soaked in DMC for 12 h to expose active material after the rate test. (c)(d) Typical TEM images of the active materials scratched from the electrode of WS_2 nanosheets after the rate test.

Figure S12. (a) The discharge/charge profiles of the WS₂ nanosheets electrode at 0.1 A g ⁻¹ from 0.01 to 3.0 V at the first cycle. The letters "a" to "e" denote the different sodiated/desodiated statuses. (b) *Ex-situ* X-ray patterns of WS₂ nanosheets electrodes collected at different discharge/charge statues marked with letters from "a" to "e".

References:

- [1] S. H. Choi and Y. C. Kang, Nanoscale, 2015, 7, 3965-3970.
- [2] Y. Liu, N. Zhang, H. Kang, M. Shang, L. Jiao and J. Chen, *Chem. —Eur. J.*, 2015, 21, 11878-11884.
- [3] D. Su, S. Dou and G. Wang, Chem. Commun., 2014, 50, 4192-4195.
- [4] W. Ryu, H. Wilson, S. Sohn, J. Li, X. Tong, E. Shaulsky, J. Schroers, M. Elimelech and A. D. Taylor, ACS Nano, 2016, 10, 3257-3266.
- [5] C. Zhu, P. Kopold, W. Li, P. A. van Aken, J. Maier and Y. Yu, J. Mater. Chem. A, 2015, 3, 20487-20493.
- [6] J. Wang, C. Luo, T. Gao, A. Langrock, A. C. Mignerey and C. Wang, *Small*, 2015, 11, 473-481.
- [7] L. David, R. Bhandavat and G. Singh, ACS Nano, 2014, 8, 1759-1770.
- [8] W. H. Ryu, J. Jung, K. Park, S. Kima and I. Kim, Nanoscale, 2014, 6, 10975-

10981.

- [9] X. Wang, Y. Li, Z. Guan, Z. Wang and L. Chen, *Chem. —Eur. J.*, 2015, 21, 6465-6468.
- [10]Z. Hu, L. Wang, K. Zhang, J. Wang, F. Cheng, Z. Tao and J. Chen, Angew. Chem., Int. Ed., 2014, 53, 12794-12798.
- [11]X. Xie, Z. Ao, D. Su, J. Zhang and G. Wang, Adv. Funct. Mater., 2015, 25, 1393-1403.
- [12]S. H. Choi, Y. N. Ko, J. Lee and Y. C. Kang, *Adv. Funct. Mater.*, 2015, 25, 1780-1788.
- [13] D. Su, S. Dou and G. Wang, Adv. Energy Mater., 2015, 5, 1401205.
- [14]H. Wang, X. Lan, D. Jiang, Y. Zhang, H. Zhong, Z. Zhang and Y. Jiang, J. Power Sources, 2015, 283, 187-194.
- [15] K. Zhang, Z. Hu, X. Liu, Z. Tao and J. Chen, Adv. Mater., 2015, 27, 3305-3309.
- [16] M. Walter, T. Zund and M. V. Kovalenko, Nanoscale, 2015, 7, 9158-9163.
- [17]Z. Zhang, X. Shi and X. Yang, *Electrochim. Acta*, 2016, **208**, 238-243.
- [18]G. D. Park and Y. C. Kang, Chem. -Eur. J., 2016, 22, 4140-4146.
- [19]Z. Zhang, X. Yang and Y. Fu, RSC Adv., 2016, 6, 12726-12729.