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S1. A. Materials: All reagents were AR grade. Nickel acetate (Ni(CH3COO)2, 4H2O), ammonium monovanadate 

(NH4VO3) and sodium nitrate (NaNO3) were purchased from E-Merck. Anhydrous ferric chloride (FeCl3), 

potassium permanganate (KMnO4), urea were purchased from Spectrochem. Ni foam, multiwalled carbon nanotube 

(MWCNT), graphite powder and polyvinylidene fluoride (PVDF) were purchased from Sigma-Aldrich. Acetylene 

black was purchased from Alfa aesar. Doubly distilled water was used to wash all the glassware and to prepare the 

solutions.

B. Characterization:

Powder X-ray diffraction (XRD) was carried out with a BRUKER-AXS-D8-ADVANCE diffractometer (Cu target). 

The XRD data analysis was performed using JCPDS software. The X-ray photoelectron spectroscopic (XPS) 

analysis was performed with VG Scientific ESCALAB MK II spectrometer equipped with a Mg Kα excitation 

source (1253.6 eV) and a five-channeltron detection system to analyse the oxidation state of the elements. The field 

emission scanning electron microscopic (FESEM) analysis was done with FEI NOVA NANOSEM 450 and the  

EDAX machine (BRUKER EDS microanalyzer) attached to the instrument was used to carry out the compositional 

analysis of the materials (IYC grant from DST). The transmission electron microscopic (TEM) analysis was carried 

out in a Hitachi H-9000 NAR instrument using an accelerating voltage of 300 kV. Electrochemical study was done 

using CHI 660E electrochemical work station. The effective BET surface area was performed using a Quantachrome 

ChemBET analyzer.  The thermo gravimetric analysis (TGA) was performed using a PerkinElmer Pyris Diamond 

TG-DTA under atmospheric pressure.
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S2: Calculation details for the electrochemical analysis:

Specific capacitance in three-electrode system, CSP = it/mΔV ----------------- (1)

Specific capacitance in two-electrode system, CSP (2 electrode cell) = 4×CSP ----------------(2)

Where, I denotes the constant cathodic current, t signifies the discharge time, m is the weight of the active mass and 

ΔV is the potential window.

Coulombic efficiency, η = tD/tC× 100 ---------------- (3)

tD is the discharging time and tC is the charging time.

Energy density, E=1/(2×3.6)CSPΔV2 

Or

E =  = ½ C (Vmax + Vmin) (Vmax + Vmin)--------------- (4)
( 𝑡2∫
𝑡1

𝑖𝑉𝑑𝑡)
Power density, P= (3600×E)/T ------------------ (5)

Where, C denotes the specific capacitance at specific current, I is the discharge current and ΔV is the potential 

window, and T is the discharge time.

S3: Synthesis of graphene oxide using Hummers method:

We synthesized graphene oxide from graphite using Hummers method.S1 Briefly, Pristine graphite was taken as the 

precursor and was oxidised by strong oxidizing agents, KMnO4, NaNO3 and conc. H2SO4. After that H2O2 was 

added to the mixture to remove the excess KMnO4 and to convert the generated MnO2 to MnSO4. Then it was 

washed with hot water and air dried. After that 50 mg of the solid material was dispersed with 50 mL distilled water 

through sonication for 3 h and then it was centrifuged for 30 min at 3000 rpm speed for washing. Finally the solid 

was dispersed in water and the solution was taken and used for the preparation of different β FeOOH@rGO 

composites. 



S4: Table:

Table S1: Comparison of the specific capacitance values for different iron based pseudocapacitor electrodes. 

Electrode Performances Reference

1. Fe3O4-rGO

2. rGO@Fe3O4

3. FeOOH

4. ZnFe2O4

5.MnFe2O4

6. Fe2O3@rGO

7. Iron nanosheet on 

graphene

8. Graphene

@CNT@FeOOH

9. β FeOOH@rGO

Specific capacitance 661 F/g at 1 

A/g.

Specific capacitance 316 F/g at 1 A/g

Specific capacitance 116 F/g at 0.5 

A/g

Specific capacitance 1235 F/g at 1 

mA/cm2

Specific capacitance 99 F/g

Specific capacitance 472 F/g at 0.5 

A/g.

Specific capacitance 717 F/g at 2 

mV/s, poor stability

Specific capacitance 267 F/g at 0.5 

A/g, low rate capability

Specific capacitance 1306 F/g at 1 

A/g
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S5: Figures:

Figure S1: (a) TG curve of the pure Ni3V2O8 NPs and its composites and ( b) FESEM image of pure Ni3V2O8 NPs. 

Figure S2: (a) EDX and (b) elemental area mapping of the CNV composite.
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Figure S3: Selected area electron diffraction (SAED) pattern of the CNV composite.

Figure S4: Comparative (a) CV curves, (b) charge-discharge curves and (a) cyclic stability up to 5000 charge-
discharge cycles studies of pure Ni3V2O8 NPs and CNV composite.

Figure S5: Comparative (a) CV curve, (b) charge-discharge curve and (c) cyclic stability up to 10000 cycles studies 
of CNV1, CNV2 and CNV3 composites.
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Figure S6: (a) FESEM image after 10000 charge-discharge cycles and (b) Nyquist plot (initial and after 10000 
charge-discharge cycles) of the CNV composite.

Figure S7: (a) Comparative TG curves of pure FeOOH nanorods and its composites and (b) comparative Raman 
spectra of  pure FeOOH, GO and GF composite.
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Figure S8: FESEM image of pure FeOOH nanomaterials.

Figure S9: (a) EDX spectra and (b) elemental area mapping of the GF composite.
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Figure S10: SAED pattern of the GF composite.

Figure S11: Comparative (a) CV curves and (b) charge-discharge curves of the GF composite, pure FeOOH and 
rGO.
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Figure S12: Comparative (a) CV curves, (b) charge-discharge curves and (c) cyclic stability up to 10000 charge-
discharge cycles of the GF1, GF2 and GF3 composites.

Figure S13: Nyquist plot (initial and after 10000 charge-discharge cycles) of the GF composite.
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