Electronic Supplementary Information (ESI)

An O3-type NaNi_{0.5}Mn_{0.5}O₂ cathode for sodium-ion batteries with improved rate performance and cycling stability

Peng-Fei Wang,^{a,b} Ya You,^{a,b} Ya-Xia Yin,^{†,a,b} and Yu-Guo Guo^{†,a,b}

^a CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P.R. China.

^b School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.

↑ To whom correspondence should be addressed. E-mail: <u>ygguo@iccas.ac.cn;</u> <u>yxyin@iccas.ac.cn</u>

Fig. S1 Powder X-ray diffraction pattern demonstrating structural stability of $NaNi_{0.5}Mn_{0.5}O_2$ after different days on exposure to air.

Fig. S2 (a) TEM and (b) HRTEM images of O3-NaNi $_{0.5}$ Mn $_{0.5}$ O₂ sample.

Fig. S3 The typical charge/discharge profiles of O3-NaNi_{0.5}Mn_{0.5}O₂/CNT electrodes working in different electrolyte solutions a) 1 M NaClO₄ in PC; b) 1 M NaPF₆ in EC and DEC (1:1 in volume); c) 1 M NaClO₄ in PC (2% FEC); d) 1 M NaClO₄ in EC and PC (1:1 in volume, 5% FEC) between 2 and 4 V at a rate of 0.05 C (1C = 240 mA g⁻¹).

Fig. S4 XPS spectra of O3-NaNi_{0.5}Mn_{0.5}O₂ for (a) Ni2p, (b) Mn2p regions, indicating nickel, manganese elements are in a valence state of +2 and +4, respectively.

Fig. S5 Cyclic voltammograms of O3-NaNi_{0.5}Mn_{0.5}O₂ with (a) Super P, (b) CNT as conductive additives, measured at a scan rate of 0.1 mV s⁻¹ in the voltage range of 2.0-4.0 V.

Fig. S6 (a) The enlarged and (b) highlighted *ex-situ* XRD patterns of O3-NaNi_{0.5}Mn_{0.5}O₂ electrodes at different charge states.

Fig. S7 XRD patterns of O3-NaNi $_{0.5}$ Mn $_{0.5}$ O₂ electrodes after different cycles.

Fig. S8 Peak current I_p as a function of square root of scan rate $v^{1/2}$ for O3-NaNi_{0.5}Mn_{0.5}O₂ electrodes with (a) Super P, (b) CNT as conductive additives, respectively.

Fig. S9 The calculated values of dE/dx and dE/dt^{1/2} of the O3-NaNM cathode as a function of stoichiometry. The results are calculated from GITT curves of the O3-NaNi_{0.5}Mn_{0.5}O₂ cathode with (a) Super P, (b) CNT as conductive additives.

Fig. S10 Na⁺ apparent chemical diffusion coefficients in the single-phase regions as a function of stoichiometry from GITT.

Materials	Particle size (µm)	Electrolyte	Practical capacity (mA h g ⁻¹)	Cycling stability	Reference
NaNi _{0.5} Mn _{0.5} O ₂ /AB	10-20	1 M NaClO ₄ in PC	125 (0.2 C 2.2-3.8 V)	75% (50 cycles)	25
NaNi _{0.5} Mn _{0.5} O ₂ /Super S	3-5	1 M NaClO ₄ in PC	125 (0.05 C, 2.0-3.8 V)		34
NaNi _{0.5} Mn _{0.5} O ₂ /AB	10-20	1 M NaClO ₄ in PC (2% FEC)	140 (0.05 C, 2.0-3.8 V)	85% (40 cycles)	26
NaNi _{0.5} Mn _{0.5} O ₂ /Super P	30	1 M NaPF ₆ in PC	185 (0.1 C, 2.0-4.3V)	54% (20 cycles)	29
NaNi _{0.5} Mn _{0.5} O ₂ /AB	0.1-1.5	1 M NaPF ₆ in EC/DEC (1:1 vol %)	124 (0.05 C, 2.0-4.0 V)	87% (30 cycles)	33
NaNi _{0.5} Mn _{0.5} O ₂ /CNT	3-5	1 M NaClO ₄ in EC/PC (1:1 vol %, 5% FEC)	141 (0.05 C, 2.0-4.0 V)	90% (100 cycles)	This work

Table S1 Comparison of cycling stability of O3-NaNi $_{0.5}$ Mn $_{0.5}$ O₂ cathodes for sodium-ion batteries.

* AB: acetylene black; CNT: carbon nanotubes; PC: propylene carbonate; FEC: fluoroethylene carbonate; EC: ethylene carbonate; DEC: diethylcarbonate.