Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supplementary information

Insights into Electronic Bands of WO₃/BiVO₄/TiO₂, Revealing High Solar Water Splitting Efficiency

Shankara S. Kalanur, Il-Han Yoo, Jucheol Park and Hyungtak Seo,*

E-mail: <u>hseo@ajou.ac.kr</u>

Figure S1. (a) Top view SEM image of $BiVO_4$ deposited on WO_3 without the organic binder ethyl cellulose and (b) with ethyl cellulose. (c) 5-nm-thick TiO_2 electrochemically deposited onto $WO_3/BiVO_4$.

Figure S2. XRD patterns for the as-synthesized orthorhombic (black line) and annealed (500 $^{\circ}$ C) monoclinic WO₃ nanostructures.

Figure S3. XRD patterns for FTO (black line), FTO/WO₃ (red line), FTO/WO₃/BiVO₄ (blue line), and FTO/WO₃/BiVO₄/TiO₂ (green line). The peaks for FTO, WO₃, and BiVO₄ are indicated with black circles, red squares, and blue triangles, respectively. TiO₂ peaks could not be seen, most probably due to the thinness of the TiO₂ layer and the high intensity of the peaks for the other materials.

Figure S4. TEM images of the WO₃ plate structures (a) without and (b) with BiVO₄. TEM images of the porous WO₃ structures (c) without and (d) with $BiVO_4$ and TiO_2 .

Figure S5. Elemental mapping for $WO_3/BiVO_4$ showing the distribution each element, indicated by different colors. (a) STEM image of $WO_3/BiVO_4$ in the selected area. (b) Mapped elements in the selected area. Elements (c) W, (d) O, (e) Bi, and (f) V are represented by different colors.

Figure S6. Nyquist plots obtained at 1.23 V Vs RHE under illumination for the $WO_3/BiVO_4$ and $WO_3/BiVO_4/TiO_2$. R1 is the solution resistance; R2 is the charge transfer resistance between electrode and electrolyte. CPE1 is the constant phase element between electrode/electrolyte.

Photoanode	R1	R2	CPE1	n
WO ₃ /BiVO ₄	41.58	400.2	4.303x10 ⁻⁵	0.9763
WO ₃ /BiVO ₄ /TiO ₂	51.11	267.7	3.694 x10 ⁻⁵	0.9763

Table S1. R1 is the solution resistance, R2 is the charge transfer resistance between electrode and electrolyte. CPE1 is the constant phase element between electrode/electrolyte. The impedance results showed that R2 and CPE1 decreased with the addition of TiO_2 layer.

Figure S7. Time course curves of H_2 evolution (at 0.8 V vs Ag/AgCl) over the WO₃/BiVO₄/TiO₂ photoanode in a three-electrode cell under simulated sunlight.

Figure S8. I-V characteristics of $WO_3/BiVO_4/TiO_2$ photoanode measure at 1.23 V vs RHE at different cycles.

Figure S9. J-V plots for WO₃, $BiVO_4$, $WO_3/BiVO_4$, $WO_3/BiVO_4/TiO_2$, and $WO_3/BiVO_4/TiO_2/Co-Pi$ under simulated solar illumination in a 0.1 M Na₂SO₄ electrolyte.

Figure S10. UV-Vis absorption curves for WO₃, BiVO₄, WO₃/BiVO₄, and WO₃/BiVO₄/TiO₂.

Figure S11. VBM of BiVO4 is ~ 1.2 eV which is in consistent with XPS results. This indicates mid-gap like character of BiVO₄ surface based on E_F position.

Figure S12. High-resolution XPS spectra of the W4f core level before (red line) and after (blue line) forming a heterojunction with $BiVO_4$.