Electronic Supplementary Information

Stably Dispersed High-Temperature Fe₃O₄/Silicone Oil Nanofluids for Direct Solar Thermal Energy Harvest

Yingying Chen¹, Xiaojun Quan², Zhongyong Wang¹, Chiahsun Lee¹, Zizhao Wang¹,

Peng Tao^{1, *}, Chengyi Song¹, Jianbo Wu¹, Wen Shang¹ and Tao Deng^{1,*}

¹State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China.

²MOE Key Laboratory for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China

*Correspondence: taopeng@sjtu.edu.cn; dengtao@sjtu.edu.cn

Fig. S1 Photographs of carbon-based nanofluids with poor dispersion stability within silicone oil. (a) Precipitation of reduced graphene oxide (rGO) within silicone oil base fluid. (b) Sedimentation of oleylamine-modified rGO within silicone oil base fluid.

Calculation of van der Waals attraction between NPs within silicone oil

The non-retard Hamaker constant (A_i) for component *i* (benzyl alcohol, Fe₃O₄, silicone) can be calculated using the following equation:

$$A_{i} = \frac{3}{4}k_{B}T\left(\frac{\varepsilon_{i} - \varepsilon_{vac}}{\varepsilon_{i} + \varepsilon_{vac}}\right)^{2} + \frac{3h\nu_{e}}{16\sqrt{2}\left(n_{i}^{2} - n_{vac}^{2}\right)^{2}}$$

where ε_i and ε_{vac} are the static dielectric constant of component *i* and vacuum, n_i and n_{vac} are the refractive index of component *i* and vacuum, k_B is the Boltzmann constant (1.38×10⁻²³ J/K), *T* is the absolute temperature, *h* is the Planck constant (6.62607004 × 10⁻³⁴ J · s) and v_e is the electronic absorption frequency (~3 × 10¹⁵ s⁻¹). The specific calculated Hamaker constant values are listed in Table S1.

Fig. S2 Schematic of inter-particle attraction within silicone oil base fluid.

The van der Waals attraction between two benzyl-alcohol modified Fe₃O₄ NPs in the silicone oil base fluid can be estimated by:

$$V_{vdW} \cong -\frac{r}{12} \begin{bmatrix} \left(\sqrt{A_{silicone}} - \sqrt{A_{benzyl \ alcohol}}\right)^2 \\ D \end{bmatrix} + \frac{\left(\sqrt{A_{benzyl \ alcohol}} - \sqrt{A_{Fe304 \ NP}}\right)^2}{D + 2L} \end{bmatrix}$$

where *r* is the radius of NPs (4.5 nm), and the separation distance (when they are in van der Waals contact) between two neighboring *D* is typically taken as 0.165 nm. The capping layer thickness *L* can be calculated by assuming the benzyl-alcohol modified NPs are core-shell structure. The density of Fe₃O₄ NPs and benzyl alcohol are 5.17 g/cm³ and 1.044 g/cm³, respectively. According to 10 wt% TGA weight loss from benzyl alcohol, *L* is estimated to be 0.708 nm. With these parameters, the van der Waals attraction between two benzyl-alcohol modified Fe₃O₄ NPs in the silicone oil base fluid is estimated to be ~9.45 $k_{\rm B}T$.

The non-retard Hamaker constant for the hybrid surface coating layer PDMS-grafted Fe₃O₄ NPs:

$$A_{eff} = \frac{3}{4} k_B T \left(\frac{\varepsilon_{eff} - \varepsilon_{vac}}{\varepsilon_{eff} + \varepsilon_{vac}} \right)^2 + \frac{3hv_e \left(n_{eff}^2 - n_{vac}^2 \right)^2}{16\sqrt{2} \left(n_{eff}^2 + n_{vac}^2 \right)^{3/2}}$$

The effective dielectric constant of the hybrid PDMS-benzyl alcohol layer can be estimated by:

$$log(\varepsilon_{eff}) = \varphi_{BA} \times log(\varepsilon_{BA}) + \varphi_{PDMS} \times log(\varepsilon_{PDMS})$$

The effective refractive index of the hybrid PDMS-benzyl alcohol layer can be estimated by:

 $n_{eff=}\varphi_{BA} \times n_{BA} + \varphi_{PDMS} \times n_{PDMS}$

The corresponding van der Waals attraction between two PDMS-modified Fe₃O₄ NPs in the silicone oil base fluid can be estimated by:

$$\begin{split} V_{vdW} &\cong -\frac{r}{12} \\ & \left[\frac{\left(\sqrt{A_{silicone}} - \sqrt{A_{hybrid\ layer}} \right)^2}{D} + \frac{\left(\sqrt{A_{hybrid\ layer}} - \sqrt{A_{Fe304\ NP}} \right)^2}{D + 2L} + \right. \end{split}$$

The capping layer thickness L can be calculated by assuming the PDMS-modified NPs are core-shell structure with a hybrid surface coating layer of mixed PDMS and benzyl alcohol. The density of the grafted PDMS is 0.98 g/cm³. Based on the total 42.3 wt% TGA weight loss from benzyl alcohol (5 wt%) and grafted PDMS (37.3wt%), assuming half of the benzyl alcohol synthetic ligands were replaced by grafted PDMS ligands, L is estimated to be 3.17 nm. With these parameters, the van der Waals attraction between two benzyl-alcohol modified Fe₃O₄ NPs in the silicone oil base fluid is estimated to be $\sim 1.78 k_{\rm B}T.$

Component	3	n	A (10 ⁻²⁰ J)
Fe ₃ O ₄	14.2	2.42	34.85
Benzyl alcohol	13	1.54	8.24
Silicone oil	2.4	1.41	5.03
Hybrid layer	2.89	1.42	5.72

Estimation of sedimentation velocity

The Stokes sedimentation velocity (V) of pure Fe₃O₄ NPs within silicone oil base fluid

can be estimated by $V = \frac{r^2}{9\mu} (\rho_{NP} - \rho_{Medium}) g$, where ρ_{NP} and ρ_{Medium} are densities of the NPs (5.17 g/cm³) and base fluid (0.959 g/cm³), respectively and μ is the dynamic viscosity of the nanofluid (47.95 cP).

Fig. S3 Sedimentation velocity as a function of particle size in silicone oil.

Fig. S4 DLS measurement of PDMS-grafted Fe_3O_4 NPs within silicone oil (0.75 mg/mL) before and after thermal aging at 120 °C for 12 h.

Fig. S5 (a) Schematic of experimental setup for solar-thermal harvest with nanofluids. (b) Solar-thermal harvest with silicone oil nanofluids (C1: 0.75 mg/ml) at an operation temperature of 150 °C.

Fig. S6 Emission spectrum of solar simulator.

Fig. S7 Absorption spectra of Fe_3O_4 /silicone oil nanofluids (C1: 0.75 mg/mL) aging at 110 °C under stirred and non-stirred state. The inset shows the photographs of the nanofluids indicating consistently stable dispersion.