# Supporting Information

# Reduction of Charge Recombination in PbS Colloidal Quantum Dot Solar Cells at the

# Quantum Dot/ZnO Interface by Inserting a MgZnO Buffer Layer

Xiaoliang Zhang, and Erik M. J. Johansson\*

Department of Chemistry-Ångström, Physical Chemistry, Uppsala University, 75120 Uppsala, Sweden.

\*E-mail: erik.johansson@kemi.uu.se

#### **Content:**

Figure S1. CBM and VBM as function of molar ratio of Mg in MZO film.

Figure S2. Cross-sectional SEM image of ZnO/MZO electrode covered FTO glass.

**Figure S3**. Light absorption and normalized photoluminescence spectra of PbS CQDs in octane.

**Figure S4**. Band diagram within the CQD solar cell with a BL at maximum power point. The CBM up-shift 0.1 eV referring to ZnO layer

**Figure S5**. *J-V* curve of the solar cell with a MZO-BL as a function of molar ratio of magnesium in MZO layer.

Figure S6. J-V curve of the solar cell with a MZO film as electron collecting layer.

**Figure S7**. The stability test of CQD solar cell with a MZO-BL and without any BLs. The unsealed solar cells were stored in ambient atmosphere under dark condition.

**Figure S8**. *J-V* curves of the solar cell without any BLs and with a MZO-BL under dark and illumination condition.

Figure S9. Model figure from SCAPS simulation.

**Table S1**. Details of SCAPS simulation used parameters.



**Figure S1**. CBM and VBM as function of molar ratio of Mg in MZO film. Values obtained from reference.<sup>1</sup>



Figure S2. Cross-sectional SEM image of ZnO/MZO electrode covered FTO glass.



**Figure S3**. Light absorption and normalized photoluminescence spectra of PbS CQDs in octane.



**Figure S4**. Band diagram within the CQD solar cell with a BL at maximum power point. The CBM up-shift 0.1 eV referring to ZnO layer



**Figure S5**. *J-V* curves of the solar cells with a MZO-BL as a function of molar ratio of magnesium in MZO layer.



Figure S6. *J-V* curve of the solar cell with a MZO film as electron collecting layer.



**Figure S7**. The stability test of CQD solar cell with a MZO-BL and without any BLs (ZnO only). The unsealed solar cells were stored in ambient atmosphere under dark condition.



**Figure S8**. *J-V* curves of the solar cell without any BLs and with a MZO-BL under dark and illumination condition.



Figure S9. Model figure from SCAPS simulation.

**Table S1**. Details of SCAPS simulation used parameters. Part of these parameters are taken from literatures.<sup>2, 3</sup>

|                                          | PbS-TBAI                                                           | PbS-EDT | ZnO(or MZO)      |
|------------------------------------------|--------------------------------------------------------------------|---------|------------------|
| Thickness (nm)                           | 230                                                                | 50      | 60 (40+20)       |
| Bandgap edge (eV)                        | 1.2                                                                | 1.2     | 3.2(or up shift) |
| Electron affinity (eV)                   | 4.15                                                               | 3.9     | 4.3              |
| Permittivity (er)                        | 20                                                                 | 20      | 66               |
| CB/VB DOS (cm <sup>-3</sup> )            | 1E19                                                               | 1E19    | 1E19             |
| Electron mobility (cm <sup>2</sup> /Vs)  | 2E-2                                                               | 2E-4    | 5E-2             |
| Ndonor (cm <sup>-3</sup> )               | 1E15                                                               | 1E14    | 1E17             |
| Nacceptor (cm <sup>-3</sup> )            | 1E15                                                               | 1E16    | 0                |
| EDT/TBAI defect (neutral)                | total density (integrated over all energies) (1/cm <sup>2</sup> ): |         |                  |
|                                          | 1.00E+16                                                           |         | -                |
| Capture cross section (cm <sup>2</sup> ) | 1.2E-13                                                            | 1.2E-13 |                  |
| Position below Ec (eV)                   | 0.5                                                                | 0.5     |                  |
| Density (cm <sup>-3</sup> )              | 1E16                                                               | 1E16    |                  |
| TBAI-ZnO interface defects               | total density (integrated over all energies) (1/cm <sup>2</sup> ): |         |                  |
| (neutral)                                | 1.00E+16                                                           |         |                  |
| Capture cross section (cm <sup>2</sup> ) |                                                                    |         | 1E-19            |
| Position above $E_v$ (eV)                |                                                                    |         | 0.6              |
| Density (cm <sup>-3</sup> )              |                                                                    |         | 1E16             |

# References

- L. Hu, D. B. Li, L. Gao, H. Tan, C. Chen, K. H. Li, M. Li, J. B. Han, H. S. Song, H. Liu, and J. Tang, *Adv. Funct. Mater.* 2016, *26*, 1899-1907.
- G. H. Kim, F. P. Garcia de Arquer, Y. J. Yoon, X. Lan, M. Liu, O. Voznyy, Z. Yang, F. Fan, A. H. Ip, P. Kanjanaboos, S. Hoogland, J. Y. Kim, and E. H. Sargent, *Nano Lett.* 2015, *15*, 7691-7696.
- M. Liu, F. P. de Arquer, Y. Li, X. Lan, G. H. Kim, O. Voznyy, L. K. Jagadamma, A. S. Abbas, S. Hoogland, Z. Lu, J. Y. Kim, A. Amassian, and E. H. Sargent, *Adv. Mater.* 2016, 28, 4142-4148.