Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Growth of Vertically Aligned Co₃S₄/CoMo₂S₄ Ultrathin

Nanosheets on Reduced Graphene Oxide as High-

performance Supercapacitor Electrode

Xijia Yang, ¹ Haiming Sun, ¹ Ping Zan, Lijun Zhao* and Jianshe Lian*

Key Lab of Automobile Materials, Ministry of Education, College of Materials

Scienceand Engineering, Jilin University, Nanling Campus, Changchun, 130025,

P.R. China.

E-mail: lijunzhao@jlu.edu.cn; lianjs@jlu.edu.cn;

Fax: +86-431-85095876

Supporting Figures

Fig. S1 FE-SEM images of a) the CMS nanoparticles; b) the CMS-rGO hybrid (rGO 15%), c) the CMS-rGO hybrid (rGO 7.5%), d) the CMS-rGO hybrid (rGO 5%).

Fig. S2 FE-SEM images of a) the MoS_2 -rGO hybrid, b) the Co_3S_4 -rGO hybrid.

Fig. S3 Raman spectrum of the as-prepared GO.

Fig. S4 a) N_2 adsorption–desorption isotherm and b) pore-size distribution curve of the as-obtained CMS-rGO hybrid.

Fig. S5 a) CV curves at the scanning rates of 20 mv s⁻¹; b) charge-discharge curves and c) the calculated specific capacitance of the CMS-rGO, CMS, Co₃S₄-rGO, and MoS₂-rGO electrode. d) Nyquist plots of the CMS-rGO, CMS, Co₃S₄-rGO, MoS₂-rGO electrode.

Fig. S6 Specific and areal capacitance of the electrode of CMS-rGO at different current densities.

Fig. S7 a) CMS thickness; b) CV curves at the scanning rates of 20 mv s⁻¹; c) charge-discharge curves and d) the calculated specific capacitance of the CMS-rGO (rGO 15%), rGO 10%, rGO 7.5%, and rGO 5% electrode.

Fig. S8 FE-SEM image of the CMS-rGO hybrid after 2000 cycles.

Fig. S9 CV curves AC at the scanning rates of 5 mV s⁻¹, 10 mV s⁻¹ and 20 mV s⁻¹.

Table S1 Comparison of the specific capacitance, rate retention, energy density and cycling stabilitybased on $Co_3S_4/CoMo_2S_4$ -rGO in present work and other reported work.

Electrode material	Specific capacitance	Rate retention	Energy density	Cycling stability	Reference
$Co_3S_4/CoMo_2S_4$ ultrathin nanosheets on rGO	1457.8 F g ⁻¹ at 1 A g ⁻¹	45.1% 1 to 20 A g ⁻¹	33.1 Wh kg⁻¹ at 0.85 kW kg⁻¹	93.8% 5000 cycles	This work
Amorphous CoMoS₄	661 F g ⁻¹ at 1 A g ⁻¹	62% 1 to 3 A g ⁻¹	27.2 Wh kg ⁻¹ at 0.4 kW kg ⁻¹	86% 10000 cycles	1
NiMoO₄ nanotubes	864 F g ⁻¹ at 1 A g ⁻¹	70% 1 to 4 A g ^{_1}	1	71% 1000 cycles (three-electrode system)	2
MoS ₂ nanosheets on N-doped	245 F g ⁻¹ at 0.25 A g ⁻¹	59% 0.25 to 20 A g ⁻¹	I	91.3% 1000 cycles (three-electrode	3
Porous Co_9S_8 nanostructures on carbon fiber	1056 F g ⁻¹ at 5 mV s ⁻¹	43% 5 to 50 mV s ⁻¹	31.4 Wh kg⁻¹ at 0.2 kW kg⁻¹	90% 5000 cycles	4
NiCo2S4@MnO2 heterostructures	1337.8 F g⁻¹ at 2 A g⁻¹	44% 2 to 20 A g ⁻¹	I	82% 2000 cycles (three-electrode system)	5
NiCo ₂ S ₄ @ polypyrrole core-shell	9.781 F cm ⁻² at 5 mA cm ⁻²	61.5% 5 to 50 mA cm ⁻²	34.62 Wh kg ⁻¹ at 0.12 kW kg ⁻	80.64% 2500 cycles	6
NiCo $_2S_4$ arrays on carbon fiber paper	1154 F g ⁻¹ at 1 A g ⁻¹	62% 1 to 20 A g ⁻¹	17.3 Wh kg ⁻¹ at 0.28 kW kg ⁻	107% 8000 cycles	7

Notes and references

- 1 X. Xu, Y. Song, R. Xue, J. Zhou, J. Gao and F. Xing, Chem. Eng. J., 2016, 301, 266-275.
- 2 Z. Yin, S. Zhang, Y. Chen, P. Gao, C. Zhu, P. Yang and L. Qi, J. Mater. Chem. A, 2015, 3, 739-745.
- 3 B. Xie, Y. Chen, M. Yu, T. Sun, L. Lu, T. Xie, Y. Zhang and Y. Wu, Carbon, 2016, 99, 35-42.
- 4 R. B. Rakhi, N. A. Alhebshi, D. H. Anjum and H. N. Alshareef, *J. Mater. Chem. A*, 2014, **2**,16190-16198.
- 5 J. Yang, M. Ma, C. Sun, Y. Zhang, W. Huang and X. Dong, *J. Mater. Chem. A*, 2015, **3**, 1258-1264.
- 6 M. Yan, Y. Yao, J. Wen, L. Long, M. Kong, G. Zhang, X. Liao, G. Yin and Z. Huang, ACS appl.mater.interfaces, 2016, 8, 24525-24535.
- 7 X. Xiong, G. Waller, D. Ding, D. Chen, B. Rainwater, B. Zhao, Z. Wang and M. Liu, *Nano Energy*, 2015, **16**, 71-80.