Electronic Supplementary Information (ESI)

Controlled growth of vertical 3D MoS_{2(1-x)}Se_{2x} nanosheets for efficient and stable

hydrogen evolution reaction

Xiaoshuang Chen,^{ab} Zhiguo Wang,^c Yunfeng Qiu,^a Jia Zhang,^a Guangbo Liu,^a Wei Zheng,^a Wei Feng,^a Wenwu Cao,^b PingAn Hu*and Wenping Hu*^{bd}

^aKey Lab of Microsystem and Microstructure of Ministry of Education, Harbin Institute of Technology, Harbin 150080, China. E-mail: hupa@hit.edu.cn

^bDepartment of Physics, Harbin Institute of Technology, Harbin 150080, China

^cSchool of Physical Electronics, Center for Public Security Information and Equipment Integration Technology, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China

^dKey Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mail: huwp@iccas.ac.cn

Simulation details and methods

All the calculations were performed by using density functional theory (DFT) calculations as implemented in the Vienna *ab initio* package (VASP).^{S1} Spinpolarization was considered for all the simulations. The projector augmented wave (PAW) method ^{S2} was used to describe electron-ion interaction, while the generalized gradient approximation using the Perdew-Burke-Ernzerhof (PBE) functional was used to describe the electron exchange-correlation. A plane wave basis was set up to an energy cut off of 520 eV. A 6×6 supercell of $MoS_{2(1-x)}Se_{2x}$ monolayer was used to investigate the adsorption of hydrogen. A 25 Å vacuum space was constructed to avoid the periodical image interactions between two adjacent $MoS_{2(1-x)}Se_{2x}$ layers. The Brillouin zone was integrated using the Monkhorst-Pack scheme ^{S3} with 3×3×1 *k*grid. All the atomic positions and cell parameters were relaxed using a conjugate gradient minimization until the force on each atom is less than 0.02 eV Å⁻¹.

Gibbs free-energy of the adsorption atomic hydrogen was calculated using equation (1):

$$\Delta G_H^0 = \Delta E_H + \Delta E_{ZPE} - T \Delta S_H \tag{1}$$

Where ΔE_{ZPE} and ΔS_{H} are the zero-point energy and entropy difference of hydrogen in the adsorbed state and the gas phase, respectively. The hydrogen adsorption energy ΔE_{H} for hydrogen in pritine MoS_{2(1-x)}Se_{2x} is calculated with the following expression:

$$\Delta E_{H} = E_{MoS_{2(1-x)}Se_{2x}+H} - E_{MoS_{2(1-x)}Se_{2x}} - \frac{1}{2}E_{H_{2}}$$
⁽²⁾

where $E_{MoS_{2(1-x)}Se_{2x}+H}$ and $E_{MoS_{2(1-x)}Se_{2x}}$ are the total energies of MoS_{2(1-x)}Se_{2x} with and without hydrogen adsorption, respectively. E_{H_2} is the energy of a gas phase hydrogen molecule.

The hydrogen adsorption energy ΔE_H for hydrogen adsorbed in MoS_{2(1-x)}Se_{2x} with S and Se vacancies is calculated with the following expression:

$$\Delta E_{H} = E_{MoS_{2(1-x)}Se_{2x}(vac)+H} - E_{MoS_{2(1-x)}Se_{2x}(vac)} - \frac{1}{2}E_{H_{2}}$$
(3)

where $E_{MoS_{2(1-x)}Se_{2x}(vac)+H}$ and $E_{MoS_{2(1-x)}Se_{2x}(vac)}$ are the total energies of $MoS_{2(1-x)}Se_{2x}$ with vacancy and with and without hydrogen adsorption, respectively.

The calculated frequencies of H₂ gas is 4345 cm⁻¹, 58 cm⁻¹, and 42 cm⁻¹. The contribution from the configurational entropy in the adsorbed state is small and is neglected. So the entropy of hydrogen adsorption as $\Delta S_{H} = \frac{1}{2}S_{H_2}$ where S_{H_2} is the entropy of molecule hydrogen in the gas phase at standard conditions.^{S4} With these values the Gibbs free energy of equation (1) can be rewritten as:

$$\Delta G_H^0 = \Delta E_H + 0.29 \tag{4}$$

The defect formation energy E_f of S/Se vacancy was calculated from the following expression:^{S5}

$$E_f(\text{Vac}) = E(\text{Vac}) - E(\text{pristine}) + \mu_{\text{S/Se}}$$
(5)

where E(Vac) is the total energy of the supercell containing a relaxed S or Se vacancy, E(pristine) is the total energy of the same pristine supercell, $\mu_{S/Se}$ is the chemical potential of S or Se.

Fig. S1 (a) schematic diagram, (b-g) different magnification SEM images for growth process of vertically oriented 3D $MoS_{2(1-x)}Se_{2x}$ nanosheets on carbon cloth with different growth time (10, 20, 30 min), (h-j) different magnification side-view SEM images of vertically oriented 3D $MoS_{2(1-x)}Se_{2x}$ nanosheets on the damaged region at the growth time of 30 min.

Fig. S2 XPS spectra of Mo 3d, S 2s, S 2p, Se 3p and Se 3d of vertically oriented 3D $Mo(S_{0.79}Se_{0.21})_2$ and $Mo(S_{0.28}Se_{0.72})_2$ alloy nanosheets.

Fig. S3 Dark-field TEM image of vertically oriented 3D $Mo(S_{0.53}Se_{0.47})_2$ nanosheets.

Fig. S4 Large region HRTEM image of vertically oriented 3D $Mo(S_{0.53}Se_{0.47})_2$ nanosheets.

Fig. S5 TEM, HRTEM images and SAED patterns of vertically oriented 3D (a,c) MoS_2 , (b,d) $Mo(S_{0.79}Se_{0.21})_2$, (e,g) $Mo(S_{0.28}Se_{0.72})_2$ and (f,h) $MoSe_2$ nanosheets.

Fig. S6 Cyclic voltammetry curves of vertically oriented 3D $MoS_{2(1-x)}Se_{2x}$ alloy nanosheets in the potential region of 0.1-0.2 V vs RHE at different scan rate (20, 40, 60 mV s⁻¹, *etc.*), (b) The current density variation Δj at 0.15 V vs RHE plotted against scan rate linearly fitted to acquire C_{dl}.

Fig. S7 Chronoamperometric curve of vertically oriented 3D $Mo(S_{0.53}Se_{0.47})_2$ nanosheets on carbon cloth under a constant overpotential of 200 mV for 10000s.

Fig. S8 Schematic illustration of HER electrocatalytic activity for vertically oriented

 $3D MoS_{2(1-x)}Se_{2x}$ nanosheets.

Catalyst	Morphology	Oneset potential η_0 (mV)	η ₁₀ (mV)	Tafel slope (mV dec ⁻¹)	Ref.	
MoS _{2(1-x)} Se _{2x}	vertical nanosheet	121	183	55.5	Present work	
$2 H MoS_2$		250	-	75-86		
1T MoS ₂	nanosheet	100	-	40	S6	
2H MoS ₂		200	320	117		
1T MoS ₂	nanosheet	135	187	43	2	
MoS ₂	nanosheet	155	195	50	8	
MoS ₂	porous film	-	-	41-45	S7	
MoS ₂	nanosheet	-	-	140-145	S8	
MoS ₂	vertical film	200	-	86	S9	
MoSe ₂	vertical film	200	-	105		
MoSe ₂	vertical	-	250	59.8	18	

Table S1 Comparison of previous reported MoS_2 and $MoSe_2$ based HERelectrocatalysts and our electrocatalyst.

	nanofilm				
MoSe ₂	macroporous film	150	250	80	S10
MoSe _{2-x}	nanosheet	170	288	98	S11
MoSe ₂	nanosheet	70	182	69	S12
$MoS_{2(1-x)}Se_{2x}$	monolayer	-	273	100	10
MoS_2		-	381	99	
MoSe ₂	nanosheet	-	348	68	S13
$Mo(S_xSe_{1-x})_2$		-	271	57	
MoS_2		-	219	91	
MoSe ₂	nanoflake	-	181	45	12
$MoS_{2(1-x)}Se_{2x}$		-	164	48	
MoO ₃ /MoS ₂	core-shell nanowire	150	-	50	S14
MoS ₂ /MoO ₂	porous nanosheet	104	-	76.1	S15
MoS ₂ /MoO ₂	3D heterostructu re	142	-	35.6	S16

MoS ₂ /rGO/P					
PD/O-	3D network	90	-	48	3
MWCNT					
MoO ₂ @N- doped MoS ₂	nanosheet	156	-	47.5	S17

References

- S1 G. Kresse and J. Furthmuller, Comput. Mater. Sci., 1996, 6, 15.
- S2 G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59, 1758.
- S3 J. D. Pack and H. J. Monkhorst, Phys. Rev. B, 1977, 16, 1748.
- S4 D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda and M. Chhowalla, *Nat. Mater.*, 2013, 12, 850.
- S5 C. G. Van de Walle and J. Neugebauer, J. Appl. Phys., 2004, 95, 3851.
- S6 D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda and M. Chhowalla, *Nano Lett.*, 2013, **13**, 6222.
- S7 Z. Lu, H. Zhang, W. Zhu, X. Yu, Y. Kuang, Z. Chang, X. Lei and X. Sun, *Chem. Commun.*, 2013, 49, 7516.

S8 Y. Yu, S.-Y. Huang, Y. Li, S. N. Steinmann, W. Yang and L. Cao, *Nano Lett.*, 2014, 14, 553.

- S9 D. Kong, H. Wang, J. J. Cha, M. Pasta, K. J. Koski, J. Yao and Y. Cui, *Nano Lett.*,
 2013, 13, 1341.
- S10 F. H. Saadi, A. I. Carim, J. M. Velazquez, J. H. Baricuatro, C. C. L. McCrory, M.P. Soriaga and N. S. Lewis, *ACS Catal.*, 2014, 4, 2866.
- S11 X. Zhou, J. Jiang, T. Ding, J. Zhang, B. Pan, J. Zuo and Q. Yang, *Nanoscale*, 2014, 6, 11046.
- S12 B. Qu, X. Yu, Y. Chen, C. Zhu, C. Li, Z. Yin and X. Zhang, ACS Appl. Mater. Interfaces, 2015, 7, 14170.
- S13 B. Xia, L. An, D. Gao, S. Shi, P. Xi and D. Xue, Crystengcomm, 2015, 17, 6420.
- S14 Z. B. Chen, D. Cummins, B. N. Reinecke, E. Clark, M. K. Sunkara and T. F. Jaramillo, *Nano. Lett.*, 2011, **11**, 4168.
- S15 L. J. Yang, W. J. Zhou, D. M. Hou, K. Zhou, G. Q. Li, Z. H. Tang, L. G. Li and S. W. Chen, *Nanoscale*, 2015, 7, 5203.
- S16 R. D. Nikam, A. Y. Lu, P. A. Sonawane, U. R. Kumar, K. C. Yadav, L. J. Li and Y. T. Chen, *ACS Appl. Mater. Interfaces*, 2015, 7, 23328.

S17 W. J. Zhou, D. M. Hou, Y. H. Sang, S. H. Yao, J. Zhou, G. Q. Li, L. G. Li, H. Liu

and S. W. Chen, J. Mater. Chem. A, 2014, 2, 11358.