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Fig. S1 (a) XRD pattern and (b) Raman spectrum of the as-prepared ZnxMn1-xCO3/GF. Because 

of the same crystal structure and close solubility product constants of ZnCO3 and MnCO3, they 

would precipitate simultaneously. All the well-defined diffraction peaks could be attributed to 

ZnCO3 (JCPDS card no. 08-0449) and MnCO3 (JCPDS card no. 83-1763). In the Raman 

spectrum, the tiny peak at 1086 cm-1 is assigned to the symmetric C-O stretching (v1), indicating 

the presence of ZnxMn1-xCO3 in the composites. Two obvious peaks at 1595 cm-1 and 1365 cm-1 

are attributed to G and D band of graphene, respectively.
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Fig. S2 Typical FESEM images of the as-prepared ZnxMn1-xCO3/GF.
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Fig. S3 TG curve of ZnxMn1-xCO3/GF in inert atmosphere. The slight weight loss from room 

temperature to 200 °C is owing to the evaporation of absorbed water. The large weight loss 

between 200 °C to 600 °C is mainly due to the decomposition of ZnxMn1-xCO3 as well as the 

further reduction of rGO. The ZnxMn1-xCO3/GF precursor was annealed at the selected 

temperatures to investigate the composition evolution. Finally, 600 °C was chosen to completely 

transform the precursor into bicomponent metal oxides/GF.
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Fig. S4 Raman spectra of ZnO-MnO/GF and ZnMn2O4/GF. In the Raman spectrum of 

ZnMn2O4/GF, the three peaks at 323, 373 and 669 cm-1 are attributed to spinel ZnMn2O4.
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Fig. S5 XPS spectra for the ZnO-MnO/GF: (a) survey spectrum and high-resolution; (b) Zn 2p 

and (c) Mn 2p spectrum.
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Fig. S6 Structure and morphology analyses of ZnMn2O4/GF: (a) XRD pattern; (b-c) typical 

FESEM images; (e) TEM image; (f) HRTEM image. The regular lattice fringes with interplanar 

spacings of 0.23 and 0.48 nm in (f) come from the (004) and (101) plane of spinel ZnMn2O4, 

respectively.
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Fig. S7 XRD pattern of the product obtained by treating the ZnxMn1-xCO3/GF hybrid at 520 °C.
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Fig. S8 XRD patterns of the products without adding graphene and annealed at: (a) 600 ºC and 

(b) 700 ºC. (c and d) FESEM images of the products without adding graphene and annealed at 

700 ºC.
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Fig. S9  XRD pattern of the calcination product of ZnCo-containing precursor/GF at 350 ºC.
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Fig. S10 (a) XRD pattern and (b) FESEM image of the calcination product of ZnCo-containing 

precursor/GF at 600 ºC. The voids between porous polyhedrons and graphene can be ascribed to 

the reaction of CoO with adjacent graphene at 600 °C.
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Fig. S11 Structural and morphology analyses of (FeO)0.333(MnO)0.667/GF. (a-c) typical FESEM 

images, showing that porous (FeO)0.333(MnO)0.667 microspheres are uniformly dispersed in the 

GF; (d) XRD pattern. The intense diffraction peaks are assigned to (FeO)0.333(MnO)0.667 (JCPDS 

card no. 77-2360). (e) STEM image and corresponding element mappings of C, O, Fe, and Mn.
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Fig. S12 Comparison of ICEs between our ZnO-MnO/GF electrode and other ZnMn2O4-based 
electrodes.
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Fig. S13 Nitrogen adsorption-desorption isotherm and the corresponding pore size distribution 

curves of (a) ZnMn2O4/GF and (b) ZnO-MnO/GF. The ZnO-MnO/GF exhibits comparable 

specific surface area and similar pore size distribution to ZnMn2O4/GF.
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Fig. S14 Comparison of ICE at different current densities among GF-425, GF-600, ZnO-
MnO/GF, and ZnMn2O4/GF electrodes.
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Fig. S15 TG curves of ZnO-MnO/GF and ZnMn2O4/GF hybrids, showing similar graphene 
content. According to previous studies, the final product of MnO after annealing at high 
temperature in air is Mn2O3.S11 Based on the theoretical value (11.3 wt%) of weight gain from 
MnO to Mn2O3, the graphene content in the ZnO-MnO/GF is evaluated to be 30 wt%.
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Fig. S16 (a and b) XRD patterns and (c and d) charge-discharge voltage profiles at 0.5 A g-1 of (a 

and c) pure ZnMn2O4 and (b and d) pure ZnO-MnO.
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Fig. S17 Comparison of coulombic efficiency between ZnO-MnO/GF and ZnMn2O4/GF 

electrodes during current-changing cycling.
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Fig. S18 Typical low- and high-magnification FESEM images of (a, b) ZnO-MnO/GF and (c, d) 

ZnMn2O4/GF, revealing that the ZnO-MnO/GF electrode possesses more porous structure than 

ZnMn2O4/GF, possibly due to more gases release and/or the re-crystallization of the MOs at high 

temperature.
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Fig. S19 Long-term cyclic performance of ZnO-MnO/GF electrode at 0.5 and 1 A g-1. In both 

cases, the capacity increases gradually from about the 60th cycle.
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Fig. S20 CV of the ZnO-MnO/GF electrode after 150 charge/discharge cycles at 0.5 A g-1. The 

minor oxidation peak at ~ 2.1 V is ascribed to Mn2+ to high valence Mn, while the reduction 

peak at 1.1 V is originated from the conversion of high valence Mn to Mn2+.
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Fig. S21 STEM image and corresponding element mapping of C, O, Zn, and Mn in ZnO-

MnO/GF electrode after 300 cycles at 0.5 A g-1.
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Fig. S22 Comparison of ICEs between our ZnO-CoO/GF electrode and other ZnCo2O4-based 
electrodes.
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