Supporting Information

A Highly Active Co-Mo-C/NRGO Composite as Efficient Oxygen Electrode for Water-Oxygen Redox Cycle

Chun-Hui Liu,^{a†} Yu-Jia Tang,^{a†} Xiao-Li Wang,^a Wei Huang,^a Shun-Li Li,*^a Long-Zhang Dong^a and Ya-Qian Lan*^a

^{*a*} School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China. E-mail: yqlan@njnu.edu.cn.

Experimental Section

Materials. All chemicals were purchased and used without further purification. All solution used in experiments were prepared with Millipore water (18.25 M Ω). The natural graphite powder was purchased from Aladdin. Potassium permanganate (KMnO₄, \geq 99%), hydrogen peroxide (H₂O₂, 30%), hydrazine hydrate (HCl, 36%), $(H_2SO_4,$ 98%) concentrated sulfuric acid and phosphomolybdic acid (H₃PMo₁₂O₄₀·nH₂O, PMo₁₂) were purchased from Sinopharm Chemical Reagent Co. Ltd. Phosphorus (V) oxide (P_2O_5 , $\geq 98.0\%$), potassium persulfate ($K_2S_2O_8$, $\geq 99.5\%$) were purchased from Shanghai lingfeng Chemical Reagent Co. Ltd. Cobalt(II) nitrate hexahydrate (Co(NO₃)₂.6H₂O, \geq 99.0%) was purchased from Guangdong Guanghua Sci-Tech Co. Ltd. Pyrrole (C₄H₅N, ≥98.0%) was purchased from Shanghai kefeng Industry & Commerce Co. Ltd. Nafion solution (5 wt%) was purchased from Aldrich. Iridium chloride (IrO₂ 99.9% metal basis, Ir \geq 84.5%) was purchased from Shanghai Macklin Biochemical Co. Ltd.

Experimental Methods.

Synthesis of Co-Mo-C/NRGO-1: The graphene oxide was synthesized through chemical exfoliation of graphite powders using a modified Hummers' method. Phosphomolybdic acid (H₃PMo₁₂O₄₀·nH₂O, PMo₁₂) is a kind of classical Keggin type polyoxometalate with strong redox abilities, which can be dissolved in water to produce the polyoxoanion PMo₁₂O₄₀ⁿ⁻. In a typical synthesis, 25 mg of GO films were dissolved in 25 mL of water by ultrasonic treatment for 30 min to obtain a suspension (1 mg mL⁻¹). Next, 0.13 g Co(NO₃)₂·6H₂O and 0.2 g PMo₁₂ (Co : Mo molar ratio = 1:3) were added into the suspension under ultrasonication, followed by introducing the solution with 80 µL Py in 15 mL water. The solution was transferred into a 50 mL Teflon-lined stainless steel autoclave maintained at 180 °C for 12 h then cooled to room temperature naturally. The product was obtained by filtration and washing with water at least three times. After drying in vacuum at 60 °C, the black powder (the mass is ca. 0.2 g) was obtained and heated at 800 °C for 3 h at a heating rate of 5 °C min⁻¹ from the room temperature under N_2 (99.99%) atmosphere in a horizontal tube furnace to prepare the Co-Mo-C/NRGO-1. The mass of the obtained Co-Mo-C/NRGO-1 was ca. 0.15 g.

In control experiments, Co-Mo-C/NRGO-2, Co-Mo-C/NRGO-3 and Co-Mo-C/NRGO-4 were synthesized by identical experimental method except the different adding amounts of Co(NO₃)₂·6H₂O, PMo₁₂ and Py precursors. The sample denoted as Co-Mo-C/NRGO-2 was obtained using 0.13 g Co(NO₃)₂·6H₂O, 0.2 g PMo₁₂ and 40 μ L Py as the precursor (Co : Mo molar ratio = 1:3) at 180 °C for 12 h and then carbonized at 800 °C. The sample denoted as Co-Mo-C/NRGO-3 was obtained using 0.13 g Co(NO₃)₂·6H₂O, 0.2 g PMo₁₂ and 160 μ L PPy as the precursor (Co : Mo molar ratio = 1:3) at 180 °C. The sample denoted at 800 °C. The sample denoted at 800 °C. The sample denoted at 800 °C for 12 h and then carbonized at 800 °C. The sample denoted at 800 °C. The sample denoted at 800 °C for 12 h and then carbonized at 800 °C. The sample denoted as Co-Mo-C/NRGO-4 was obtained using 0.38 g Co(NO₃)₂·6H₂O, 0.2 g PMo₁₂ and 80 μ L PPy as the precursor (Co : Mo molar ratio = 1:1) at 180 °C for 12 h and then carbonized at 800 °C.

Synthesis of $Mo_2C/Co_6Mo_6C_2/NRGO$: The as-synthesized Co-Mo-C/NRGO-1 was dispersed in 5 M HCl solution and stirred for 24 h to remove metallic cobalt to obtain $Mo_2C/Co_6Mo_6C_2/NRGO$ composite.

*Synthesis of Mo*₂*C/NRGO:* The Mo₂*C*/NRGO was synthesized via the method which is similar to the Co-Mo-C/NRGO-1 without adding $Co(NO_3)_2 \cdot 6H_2O$.

Synthesis of Co-Mo-C/NRGO-1 with different GO loadings and temperatures: In this article, the amounts of GO were selected as 0 mg, 25 mg (1mg mL⁻¹) and 40 mg (1.6 mg mL⁻¹) to prepare Co-Mo-C/NRGO-1. The Co-Mo-C/NRGO-1 was also obtained by the different carbonization temperatures (700 °C, 800 °C and 900 °C).

Characterization. Powder X-Ray diffraction (PXRD) patterns were recorded on a D/max 2500VL/PC diffractometer (Japan) equipped with graphite monochromatized Cu K α radiation (λ = 1.54060 Å). Corresponding work voltage and current is 40kV

and 100mA, respectively. Transmission electron microscopy (TEM) was carried out on JEOL-2100F apparatus at an accelerating voltage of 200 kV. High-resolution TEM (HRTEM) image was carried out on FEI Tecnai G2 F30 apparatus at an accelerating voltage of 300 kV. Surface morphologies of the carbon materials were examined by a SEM (JSM-7600F) at an acceleration voltage of 10kV. Elemental mapping and energy dispersive X-ray spectroscopy (EDX) were performed with JSM-5160LV-Vantage typed energy spectrometer. X-ray photoelectron spectroscopy (XPS) was collected on scanning X-ray microprobe (PHI 5000 Verasa, ULAC-PHI, Inc.) using Al k α radiation and the C1s peak at 284.8 eV as internal standard. The Raman spectra of dried samples were obtained on Lab-RAM HR800 with excitation by an argon ion laser (514.5nm) .Nitrogen adsorption-desorption isotherms were measured at 77K on a Quantachrome Instruments Autosorb AS-6B. The pore size distributions were measured by the Barrett-Joyner-Halenda (BJH) method.

Electrochemical Measurement. For OER test, electrochemical measurements were performed in a standard three-electrode glass cell on a CHI Instruments 660e electrochemical workstation (Shanghai Chenhua Co. Ltd., China). A glassy carbon electrode (GCE, 3 mm in diameter) was used as the working electrode, Ag/AgCl (in 3 M KCl) as the reference electrode, Pt wire as the counter electrode. The sample was prepared by dispersing 4 mg of catalyst into 2 mL of 9:1 v/v water/Nafion by ultrasonication to form a homogeneous ink. Then 5 μ L of the catalyst ink was loaded onto a GCE (loading amount of ~ 0.14 mg cm⁻²). Commercial IrO₂ catalyst was also used as a reference sample. 1 M KOH solution was used as the electrolyte and purged with O₂ for 30 min prior to OER test. LSV measurements were conducted with a scan rate of 5 mV s⁻¹. EIS measurements were carried out from 1 000 kHz to 100 mHz with an amplitude of 10mV at the open-circuit voltage. To estimate the electrochemical active surface areas of the catalysts, CV was tested by measuring EDLC under the potential window of 0.2-0.3 V vs. Ag/AgCl with various scan rates (10, 20, 40, 60, 80, and 100 mV s⁻¹). All potentials reported in this paper were converted from vs.

Ag/AgCl to vs. RHE by adding a value of $0.197 + 0.059 \times pH$. All LSV curves are presented with iR compensation.

For ORR test, a glassy carbon electrode (5 mm in diameter) was used as the working electrode, Ag/AgCl (3 M KCl) as the reference electrode, Pt wire as the counter electrode. Typically, 10 μ L well-dispersed catalysts suspensions were pipetted onto the glassy carbon electrode surface and allowed to dry at room temperatur. For comparison, a commercially available Pt/C (20 wt%) catalyst was prepared in the same condition. Cyclic voltammetry experiments were performed from -0.8 to 0.2 V vs. Ag/AgCl at a scan rate of 100 mV s⁻¹ in 0.1 M KOH solutions purged with N₂ or O₂ for at least 30 minutes before testing.

In the rotating disk electrode (RDE) tests, the LSV curves were measured in O_2 saturated 0.1 M KOH solution and the potential was varied from -0.8 to 0.2 V vs. Ag/AgCl with a scan rate of 5 mV s⁻¹ at various rotating speeds from 400 to 1600 rpm.

To examine the ORR performance, the electron transfer number (n) was conducted according to Koutecky-Levich (K-L) equation.

(1)
$$j^{-1} = j_L^{-1} + j_k^{-1} = (B\omega^{1/2})^{-1} + j_k^{-1}$$

(2) B = $0.62 n F C_{O2} (D_{O2})^{2/3} v^{-1/6}$

(3)
$$j_k = nFkC_{O2}$$

Where j is the measured current density, j_k and j_L are the kinetic and diffusion-limiting current density, respectively. B is Levich slope which is given by (2). n is the number of electrons transferred for ORR. ω is the rotation rate ($\omega = 2\pi N$, N is the linear rotation speed), F is the Faraday constant (F = 96485 C mol⁻¹), v is the kinetic viscosity, and C₀₂ is the concentration of O₂ (1.2*10⁻³ mol L⁻¹), and D₀₂ is the diffusion coefficient of O₂ in 0.1 M KOH (1.9*10⁻⁵ cm s⁻¹).

Supporting Figures

Figure S1. PXRD patterns of Co-Mo-C/NRGO-1 composites carbonized at different temperatures ($700 \sim 900^{\circ}$ C).

Figure S2. PXRD patterns of Co-Mo-C/NRGO-n ($n=1\sim4$) composites with different precursors of PMo₁₂, PPy and Co(NO₃)₂.

Figure S3. TEM image of Co-PCG composite.

Figure S4. TEM images of (a) Co-Mo-C/NRGO-1, (b) Co-Mo-C/NRGO-2, (c) Co-Mo-C/NRGO-3 and (d) Co-Mo-C/NRGO-4.

Figure S5. SEM images of (a) Co-Mo-C/NRGO-2, (b) Co-Mo-C/NRGO-3 and (c) Co-Mo-C/NRGO-4.

Figure S6. TEM images (a) Mo₂C/Co₆Mo₆C₂/NRGO, (b) Mo₂C/NRGO. SEM images of (c) Mo₂C/Co₆Mo₆C₂/NRGO, (d) Mo₂C/NRGO.

Figure S7. (a) Magnified TEM image of $Mo_2C/Co_6Mo_6C_2/NRGO$ composite. (b) HRTEM image of $Mo_2C/Co_6Mo_6C_2/NRGO$ composite. (c) HAADF-STEM image of $Mo_2C/Co_6Mo_6C_2/NRGO$ and the corresponding EDS mapping of Co, Mo, C and N elements, respectively.

Figure S8. (a) HRTEM image of $Mo_2C/NRGO$ composite. (b) Magnified TEM image of $Mo_2C/NRGO$ composite. (c) HAADF-STEM image of $Mo_2C/NRGO$ and the corresponding EDS mapping of Mo, C and N elements, respectively.

Figure S9. EDX spectrum of Co-Mo-C/NRGO-1 composite.

Figure S10. XPS spectrum of $Mo_2C/Co_6Mo_6C_2/NRGO$ composite. (b) Co2p, (c) Mo3d, (d) C1s, (e) N1s and (f) O1s high-resolution XPS spectra.

Figure S11. XPS spectrum of $Mo_2C/NRGO$ composite. (b) Mo3d, (c) C1s, (d) N1s and (e) O1s high-resolution XPS spectra.

Figure S12. Raman spectrum of Co-Mo-C/NRGO-1 composites with different GO loadings.

Figure S13. (a) Nitrogen adsorption-desorption isotherms of Co-Mo-C/NRGO-1, $Mo_2C/Co_6Mo_6C_2/NRGO$, $Mo_2C/NRGO$. (b) The pore size distribution of the above samples by BJH method.

Figure S14. LSV curves of Co-Mo-C/NRGO-1 catalyst before and after iR_s correction.

Figure S15. (a) LSV curves for Co-Mo-C/NRGO-n ($n=1\sim4$) composites prepared with different precursors. (b) The corresponding Tafel plots.

Figure S16. (a) LSV curves for Co-Mo-C/NRGO-1 composites prepared at different carbonization temperatures (700~900°C). (b) The corresponding Tafel plots.

Figure S17. (a) LSV curves for Co-Mo-C/NRGO-1 ($n=1\sim4$) composites prepared with different GO loadings. (b) The corresponding Tafel plots.

Figure S18. (a, c, e) CV curves for Co-Mo-C/NRGO-1, $Mo_2C/Co_6Mo_6C_2/NRGO$ and $Mo_2C/NRGO$, respectively at the scan rates from 10 to 100 mV s-1. (b, d, f) The capacitive currents at 0.25 V vs. Ag/AgCl for the corresponding catalysts.

Figure S19. (a) CV curves of Co-Mo-C/NRGO-1 composite in N_2 - and O_2 -saturated 0.1 M KOH. (b) Kouteck-Levich plots of Co-Mo-C/NRGO-1 composite derived from RDE data.

Sample	Co (at.%)	Mo (at.%)
Co-Mo-C/NRGO-1	10.0	45.0
Co-Mo-C/NRGO-2	8.7	38.9
Co-Mo-C/NRGO-3	7.0	27.3
Co-Mo-C/NRGO-4	19.0	45.6

Table S1. The Co and Mo contents in different catalysts by ICP analysis.

Table S2. Atomic percents of different nitrogen species for different catalysts from XPS analysis.

N species	Co-Mo-C/NRGO-1	Mo ₂ C/Co ₆ Mo ₆ C ₂ /NRGO	Mo ₂ C/NRGO		
	Atomic percents (100 %)				
Pyridinic	49.8	56.3	34.0		
Pyrrolic	37.8	29.2	41.9		
Graphitic	12.4	14.5	24.1		

Catalysts	Electrolyte	Substrate	Loading mass (mg cm ⁻²)	η_{10} (mV) ^a	Tafel slope (mV dec ⁻¹)	Reference
Co-Mo-C/NRGO-1	1 M KOH	Glassy carbon	0.14	330	42	This work
$np-(Co_{0.52}Fe_{0.48})_2P$	1 M KOH	Free-standing	/	270	30	1
CoMn LDH	1 M KOH	Glassy carbon	0.142	324	43	2
Co ₂ B-500	0.1 M KOH	Glassy carbon	0.21	380	45.0	3
Co-P	1 M KOH	Glassy carbon	/	345	47	4
LT-LiCoO ₂	0.1 M KOH	Glassy carbon	0.25	/	52	5
CoMnP	0.1 M KOH	Glassy carbon	0.284	330	61	6
PCPTF	1 M KOH	Glass slide	/	~300	65	7
Co ₃ O ₄ /N-rmGO	1 M KOH	Ni foam	0.24	310	67	8
Co-N-1min	1 M KOH	Nickel foam	1.5	290	70	9
CP/CTs/Co-S	1 M KOH	Carbon paper	~0.32	306	72	10
(Co-NMC) ₁ /NC	0.1 M KOH	Glassy carbon	~0.4	360	83.3	11
CoO _x @CN	1 M KOH	Glassy carbon	~0.12	260	/	12
Co@Co ₃ O ₄ /NC	0.1 M KOH	Glassy carbon	0.21	410	/	13

Table S3. Comparison of OER performance in alkaline media for catalysts at this work and some other recently reported Co-based catalysts.

^{*a*} the overpotential at 10 mA cm⁻² reported with respect to RHE and compared with the standard reaction potential of 1.23 V.

Reference.

[1] Y. Tan, H. Wang, P. Liu, Y. Shen, C. Cheng, A. Hirata, T. Fujita, Z. Tang, M. Chen, *Energy Environ. Sci.* 2016, *18*, 427.

[2] F. Song, X. Hu, J. Am. Chem. Soc. 2014, 136, 16481.

[3] J. Masa, P. Weide, D. Peeters, I. Sinev, W. Xia, Z. Sun, C. Somsen, M. Muhler,W. Schuhmann, *Adv. Energy Mater.* 2016, *6*, 1502313.

- [4] N. Jiang, B. You, M. Sheng, Y. Sun, Angew. Chem. Int. Ed. 2015, 54, 6251.
- [5] T. Maiyalagan, K. A. Jarvis, S. Therese, P. J. Ferreira, A. Manthiram, Nat.

Commun. 2014, 5, 3949.

[6] D. Li, H. Baydoun, C. N. Verani, S. L. Brock, J. Am. Chem. Soc. 2016, 138, 4006.

[7] Y. Yang, H. Fei, G. Ruan, J. M. Tour, Adv. Mater. 2015, 27, 3175.

[8] Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, *Nat. Mater.* 2011, 10, 780.

[9] Y. Zhang, B. Ouyang, J. Xu, G. Jia, S. Chen, R. S. Rawat, H. J. Fan, *Angew. Chem. Int. Ed.* 2016, 55, 8670.

[10] J. Wang, H.-x. Zhong, Z.-l. Wang, F.-l. Meng, X.-b. Zhang, ACS Nano 2016, 10, 2342.

[11] B. Bayatsarmadi, Y. Zheng, Y. Tang, M. Jaroniec, S.-Z. Qiao, *Small* 2016, *12*, 3703.

[12] H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang, Y. Wang, J. Am. Chem. Soc. 2015, 137, 2688.

[13] A. Aijaz, J. Masa, C. Rösler, W. Xia, P. Weide, A. J. R. Botz, R. A. Fischer, W. Schuhmann, M. Muhler, Angew. Chem. Int. Ed. 2016, 55, 4087.