Supporting Information

Improved conductivity of CH₃NH₃PbI₃ via mixing LiCl for hole-conductor-free fully printable perovskite solar cells

Yusong Sheng[†], Yue Hu[†], Anyi Mei, Pei Jiang, Xiaomeng Hou, Miao Duan, Li Hong, Yanjun Guan, Yaoguang Rong, Yuli Xiong, Hongwei Han*

Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China

*Correspondence to Hongwei Han, E-mail: hongwei.han@mail.hust.edu.cn

Sample		V _{oc} (mV)	J _{sc} (mA cm ⁻²)	FF	PCE (%)
Control	average	874±10	17.15±0.81	0.66±0.024	9.81±0.45
	champion	884	17.11	0.71	10.70
1.50/	average	895±12	18.05±0.36	0.72 ± 0.017	11.56±0.38
15%	champion	915	18.08	0.74	12.24
2007	average	935±14	18.98±0.60	0.78 ± 0.020	13.65±0.39
30%	champion	927	20.20	0.77	14.46
50%	average	871±13	12.37±0.62	0.80±0.013	8.62±0.53
	champion	888	12.64	0.82	9.15

Table S1. Performance of the studied solar cells under AM 1.5G illumination

Table S2. The XPS ultimate analysis of I, Cl and Pb. The mixing perovskite was prepared by spin-coating method on FTO and annealed at 100 °C for 10 min.

Peak	Position BE (eV)	FWHM (eV)	Raw Area (cps eV)	Atomic Mass	Atomic Conc %	Mass Conc %
I 3d	618.896	1.159	714282.2	126.904	30.04	56.24
Cl 2p	198.846	0.909	1160.1	35.460	0.62	0.33
Pb 4f	137.946	0.920	183062.8	207.206	10.74	32.84

Fig. S1 The surface SEM image of 30% perovskite/LiCl film (on FTO) and its EDS elemental mapping of Cl, I and Pb.

Fig. S2 Histograms of (a) PCE, (b) Voc, (c) J_{SC} , and (d) FF of all the devices.

Fig. S3 Nyquist plots of the control and 30% LiCl-based devices under dark at various bias.

Fig. S4 Equivalent circuit was used to fit the Nyquist curves.

Fig. S5 Sample schematic diagram for Hall-effect measurements.

Hall-effect measurement

The sample used for Hall-effect measurement was prepared by spin coating process on the glass (15×15 mm). The thicknesses of perovskite about 1mm. Firstly, we prepared the perovskite layer on the glass. Then we pasted four indium foils (3×3 mm) on the surface of perovskite layer. Finally, the sample was used for Hall-effect measurement. Hall-effect measurements were performed at room temperature on a 4probe sample holder placed between the plates of an electromagnet, where the magnetic field of 0.55 T and current of 40 nA were applied.

NO.	I (nA)	Bulk concentration (/cm ³)	Resistivity (ohm cm)	Conductivity (1/ohm cm)	Mobility (cm ² /Vs)	Average Hall coefficient
						(cm ³ /C)
1	5.00E-09	-6.80E+14	1.40E+02	7.16E-03	6.57E+01	-9.18E+03
2	1.00E-08	-4.29E+15	1.21E+02	8.28E-03	1.21E+01	-1.45E+03
3	1.50E-08	-1.06E+15	1.34E+02	7.44E-03	4.36E+01	-5.86E+03
4	2.00E-08	-2.18E+15	1.23E+02	8.12E-03	2.32E+01	-2.86E+03
5	2.50E-08	2.74E+17	9.87E+01	1.01E-02	2.31E-01	2.28E+01
6	3.00E-08	-7.92E+15	7.31E+01	1.37E-02	1.08E+01	-7.88E+02
7	4.00E-08	-1.74E+15	5.71E+01	1.75E-02	6.27E+01	-3.58E+03
8	5.00E-08	-5.67E+15	1.02E+02	9.81E-03	1.08E+01	-1.10E+03

Table S3. The Hall-effect measurement parameters of the 30% LiCl-based film.