Supporting Information

Synthesis of Nanoporous Structured Iron Carbide/ Fe-N-Carbon

Composites for Efficient Oxygen Reduction Reaction in Zn-Air

Batteries[†]

Zheng Kun Yang, Zhi-Wei Zhao, Kuang Liang, Xiao Zhou, Cong-Cong Shen, Ya-Nan Liu, Xin Wang, An-Wu Xu^{*}

Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China

*To whom correspondence should be addressed.

Email: anwuxu@ustc.edu.cn

Fig. S1 The price of chemicals for the preparation of Fe–Phen–N catalysts. The data was from Sinopharm Chemical Reagent Co. Ltd.. Website: http://www.sinoreagent.com.

Evaluating the cost of the Fe–Phen–N–800 sample: 0.99 g Phen: \$ 9.73 + 0.33 g FeCl₂·4H₂O: \$ 0.043 +4.5 DCA: \$ 0.33 = \$ 10.10 Fe–Phen–N–800 (~ 20% yield compared with the starting materials). Therefore the cost is about \$ 8.69 /g for Fe–Phen–N–800.

Fig. S2 XRD pattern of Fe-Phen-N-800 catalyst before leaching in 6 M HCl solution.

Fig. S3 shows that the decomposition of the Fe–Phen–N–800 sample divided in two stages: (i) a slight mass loss of 8.42% (crystal water release) and (ii) a sharp mass loss of 86.25% due to the decomposition of Fe–Phen–N–800 to produce Fe_2O_3 material.

Fig. S3 TG curve of the Fe–Phen–N–800 sample in air.

Fig. S4 TOF-SIMS spectrum of Fe-Phen-N-800 sample.

Fig. S5 (a) N_2 adsorption/desorption isotherms and (b) pore distribution of Fe–Phen–N–800 catalyst.

Table S1. The Comparison of ORR performance of NPMCs from the recent literatureand this work (electrode 1600 rpm in 0.1 M KOH medium).

Catalysts	Catalyst loading (mg cm ⁻²)	Onset potential (V vs RHE)	Current density (mA cm ⁻ ²)	Electron transfer numbers	Reference
Fe3C-Fe-N/C-800	0.1	0.99	5.7	4.02	This work
LDH@ZIF-67-800	0.2	0.94	5.5	4.0	Adv. Mater., 2016,28, 2337
Co3O4/rmGO	0.17	0.88	4.5	3.9	Nat. Mater. 2011, 10, 780
Co/N-carbon fibres	0.306	0.95	2.2	3.9	Chem. Eur. J. 2015, 21, 2165
CoP-CMP800	0.6	0.85	4.8	3.94	Adv. Mater., 2014, 26, 1450
Fe-N-CNFs	0.6	0.93	5.12	3.95	Angew. Chem. Int. Ed., 2015, 54, 8179
Fe–N–CNFs	0.6	0.93	5.1	3.93	Angew. Chem. Int. Ed., 2015, 54,1
CoII-A-rG-O	0.6	0.88	5.3	3.95	Angew. Chem. Int. Ed., 2015, 54, 12622
N-Carbon nanotube frameworks	0.2	0.95	5.2	3.97	Nature Energy, 2016, 1, 15006.
Fe/N/C HNSs.	0.255	/	5.8	3.80	Nanoscale, 2015, 7, 1501
rGO/(Co2+–THPP)7	1.0	0.86	4	3.85	Angew. Chem. Int. Ed., 2013, 52, 5585
Co-N-C-NS	0.464	0.93	5.7	3.7	Nanoscale,

					2015, 7, 10334
Fe/N/C	0.458	0.91	3.75	3.96	Sci. Rep., 2014, 4, 43866
Fe-Nx-C	0.36	0.95	5	3.3	Carbon, 214, 78 49
Fe ₃ C@NG800-0.2	0.2	0.95	5.5	3.5	ACS Appl. Mater. Interfaces, 2015,7, 21511

Fig. S6 Durability test of the Pt/C catalyst for 10000 cycles in O_2 -saturated 0.1 M KOH solution.

Catalysts	Catalyst loading (mg cm ⁻ ²)	Onset potential (V vs RHE)	Current density (mA cm ⁻ ²)	Electron transfer numbers	Reference
Fe ₃ C-Fe-N/C-800	0.1	0.85	5.6	3.98	This work
FP-Fe-TA-N- 850	0.3	0.83	5.5	3.5	Angew. Chem. Int. Ed., 2015, 54, 1
N-mesoporous carbon	0.8	0.80	4.5	3.2	J. Am. Chem. Soc., 2011, 133, 206
N,P-mesoporous nanocarbon	0.45	0.83	5.6	4.0	Nature Nanotech., 2015, 10,444
Co/N/C	0.6	0.83	3.8	3.5	Chem. Eur. J., 2011, 17, 2063

4.05

3.96

ACS

2014, 4, 3928

Catal.,

0.89

Fe-N-C-750

0.6

Table S2. The Comparison of ORR performance of non-precious catalysts from the recent literature and this work (electrode 1600 rpm in 0.1 M HClO₄ medium)

Fig. S7 Durability test of the Pt/C catalyst for 10000 cycles in O_2 -saturated 0.1 M HClO₄ solution.

Fig. S8 Raman spectra of Fe–Phen–N catalysts pyrolyzed at different temperatures.

Fig. S9 XRD patterns of Fe–Phen–N samples pyrolyzed at different temperatures.

Fig. S10 Electrical conductivity of Fe–Phen–N samples as a function of pyrolysis temperature.

Fig. S11 XPS survey scan of Fe–Phen–N samples pyrolyzed at different temperatures.

 Table S3. Elemental compositions of Fe-Phen-N samples pyrolyzed at different

 S0

Temp (°C)	C atom %	N atom %	Fe atom %	O atom %
700	75.53	19.22	0.93	4.32
750	82.27	12.93	0.81	3.90
800	89.32	6.25	0.78	3.65
850	90.36	5.81	0.62	3.21
900	93.58	2.92	0.52	2.98

temperatures determined by XPS.

Fig. S12 Percentage of various nitrogen species as a function of pyrolysis temperature.

Fig. S13. High-resolution XPS N1s spectra of Fe–Phen–N catalysts pyrolyzed at different temperatures.

Fig. S14 Comparison of the RDE polarization curves of Fe–Phen–N catalysts pyrolyzed at different temperatures in O_2 -saturated 0.1 M KOH solution at a sweep rate of 10 mV s⁻¹ and electrode rotation speed of 1600 rpm (the catalyst loading is 0.1 mg cm⁻²).

Fig. S15 Comparison of the RDE polarization curves of Fe–Phen–N catalysts pyrolyzed at different temperatures in O_2 -saturated 0.1 M HClO₄ solution at a sweep rate of 10 mV s⁻¹ and electrode rotation speed of 1600 rpm (the catalyst loading is 0.1 mg cm⁻²).

Fig. S16 RDE polarization curves of Fe–Phen–N–800 catalyst in O_2 -saturated 0.1 M KOH (a) and 0.1 M HClO₄ (b) before and after being leached in acid.

Fig. S17 (a) N_2 adsorption/desorption isotherms and (b) pore distribution of Fe–Phen–N–800 catalyst before leaching.

Fig. S18 Open circuit voltage measurements of the Zn-Air batteries with Fe-Phen-N-800 and commercial Pt/C as the cathode catalysts.

ORR Catalyst	Zn electrode	Electrolyte	Voltage @ 10 mA cm ⁻²	2 Reference
Fe-Phen-N-800	Zn foil	6 M KOH	1.26	This work
N,S-GO	Zn plate	6 М КОН	1.24	Electrochim. Acta 2015, 183, 63.
FePc-Py-CNT	Zn powder	6 М КОН	1.25	Nat. Commun. 2013, 4, 2076
Fe-N-CNFs	Zn foil	6 М КОН	1.21	Angew. Chem. Int. Ed. 2015, 54, 8179.
Amorphous MnO _x /C	Zn powder	6 M KOH	1.24	Nano Lett. 2011, 11, 5362
N-doped CNTs	Zn plate	6 М КОН	1.22	Electrochim. Acta 2011, 56, 5080.
N-CNF aerogel	Zn foil	6 M KOH	1.25	NanoEnergy2015, 11, 366.

Table S4. Comparasion of the Zn-air battery performance of Fe-Phen-N-800catalyst with reported values.