Supporting Information

A new synthesis strategy towards enhancing the structure and cycle

stabilities of LiNi_{0.8}Co_{0.15}Al_{0.05}O₂ cathode material

H. Z. Zhang, C. Liu, D. W. Song*, L. Q. Zhang*, L. J. Bie

Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials

Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

Corresponding Author

*E-mail: songdw2005@mail.nankai.edu.cn (D. W. Song)

*E-mail: tianjinzhanglq@163.com (L. Q. Zhang)

Fig. S1 SEM images of LNCA powders. a, b, c and d are LNCA50, LNCA32, LNCA23

and LNCA05 respectively.

Table S1. The compositions of LNCA materials, determined by inductively coupled

 plasma test.

Samples	Designed values	Measured values
LNCA50	$LiNi_{0.80}Co_{0.15}Al_{0.05}$	$Li_{0.999}Ni_{0.802}Co_{0.152}Al_{0.045}$
LNCA32	$LiNi_{0.80}Co_{0.15}Al_{0.05}$	$Li_{0.990}Ni_{0.803}Co_{0.149}Al_{0.047}$
LNCA23	$LiNi_{0.80}Co_{0.15}Al_{0.05}$	$Li_{0.985}Ni_{0.801}Co_{0.153}Al_{0.047}$
LNCA05	$LiNi_{0.80}Co_{0.15}Al_{0.05}$	$Li_{0.988}Ni_{0.804}Co_{0.149}Al_{0.047}$

Table S2. The atom parameters of LNCA32 samples synthesized at various temperatures. sg = space group, occ = site occupancy. The figures in parenthesis are the error value.

sg: R 3 m			LNCA32_650)			LNCA32_75	0			LNCA32_85	0
	x	у	Z	occ	x	у	Z	occ	x	у	Z	occ
Li (3a)	0	0	0	0.978(2)	0	0	0	0.989(2)	0	0	0	0.975(4)
Li (3b)	0	0	0.5	0.022(2)	0	0	0.5	0.011(2)	0	0	0.5	0.025(4)
Ni (3a)	0	0	0	0.022(2)	0	0	0	0.011(2)	0	0	0	0.025(4)
Ni (3b)	0	0	0.5	0.778(2)	0	0	0.5	0.789(2)	0	0	0.5	0.775(4)
Co (3b)	0	0	0.5	0.1500	0	0	0.5	0.1500	0	0	0.5	0.1500
Al (3b)	0	0	0.5	0.0500	0	0	0.5	0.0500	0	0	0.5	0.0500
O (6c)	0	0	0. 24327(21)	1	0	0	0.24337(23)	1	0	0	0.24328(23)	1

Fig. S2 Equivalent circuits used to fit the experimental data. R_s is solution resistance, R_{ct} is interfacial charge-transfer resistance, CPE is a constant phase element, W_o is assigned to the semi-infinite Warburg diffusion impedance in the bulk.

Table S3. The simulated results from electrochemical impedance spectra of the LNCA
 electrodes.

Sample	$R_{s}\left(\Omega\right)$	$R_{ct}\left(\Omega ight)$
LNCA_50	1.82	154.8
LNCA_32	1.93	99.5
LNCA_23	2.59	130.1
LNCA_05	2.80	102.9