Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

SUPPLEMENTARY INFORMATION

FOR

Catalytic Properties of Group 4 Transition Metal Dichalcogenides (MX₂, M = Ti, Zr, Hf; X = S,

Se, Te)

Rou Jun Toh,^a Zdenek Sofer^b and Martin Pumera^{a*}

^aDivision of Chemistry & Biological Chemistry School of Physical and Mathematical

Sciences, Nanyang Technological University, 637371, Singapore.

^bDepartment of Inorganic Chemistry, University of Chemistry and Technology Prague,

Technická 5, 166 28 Prague 6, Czech Republic

Figure S1. Scanning electron micrographs and corresponding energy-dispersive X-ray maps of group 4 TMDs. Scale bars represent 10 μ m.

Material	Ti	Zr	Hf	S	Se	Те	С	0	AI	Si
·	at. %									
TiS ₂	27.19	-	-	41.07	-	-	14.23	16.95	0.32	0.24
ZrS_2	-	27.00	-	29.47	-	-	28.70	14.43	0.39	-
HfS ₂	-	-	20.22	15.76	-	-	23.06	40.97	-	-
TiSe ₂	17.06	-	-	-	25.55	-	19.21	36.36	-	1.82
ZrSe ₂	-	9.91	-	-	21.40	-	50.94	17.75	-	-
HfSe ₂	-	-	10.34	-	20.61	-	47.35	21.70	-	-
TiTe ₂	23.30	-	-	-	-	34.65	-	41.08	0.98	-
ZrTe ₂	-	12.66	-	-	-	30.30	19.15	37.88	-	-
HfTe ₂	-	-	11.25	-	-	25.34	23.96	39.45	-	-

Figure S2. Elemental compositions of group 4 TMD materials based on energy-dispersive X-ray spectroscopy.

Material	Surface Chalcogen / Metal Ratio							
	Before electrochemical treatment	After reductive treatment	After oxidative treatment					
TiS ₂	1.41	Loss of TiS ₂	Loss of TiS ₂					
ZrS_2	0.77	Loss of ZrS ₂	-					
HfS ₂	0.43	-	-					
TiSe ₂	1.67	Loss of TiSe ₂	Loss of TiSe ₂					
ZrSe ₂	0.88	Loss of ZrSe ₂	Loss of ZrSe ₂					
HfSe ₂	0.80	1.15	0.99					
TiTe ₂	3.78	Loss of TiTe ₂	Loss of TiTe ₂					
ZrTe ₂	5.08	Loss of ZrTe ₂	Loss of ZrTe ₂					
HfTe ₂	4.16	Loss of HfTe ₂	Loss of HfTe ₂					

Figure S3. Tabulated chalcogen-to-metal ratios of group 4 TMD materials before and electrochemical treatments based on high resolution X-ray photoelectron spectroscopy.

Figure S4. The effect of electrochemical treatment on HER performance of TiS_2 . (a) Linear sweep voltammograms for HER in acidic electrolyte on TiS_2 (black line), TiS_2 after -1.5 V treatment (red line) and TiS_2 after +0.7 V treatment (blue line) deposited on a GC electrode. Presented in the bar charts are the averages of the (b) overpotential at -10 mA cm⁻² current density, (c) Tafel slopes and (d) HER onset potential, with their corresponding error bars for bare GC and TiS_2 before and after electrochemical treatment.

Figure S5. The effect of electrochemical treatment on HER performance of ZrS_2 . (a) Linear sweep voltammograms for HER in acidic electrolyte on ZrS_2 (black line) and ZrS_2 after -1.1 V treatment (red line) deposited on a GC electrode. Presented in the bar charts are the averages of the (b) overpotential at -10 mA cm⁻² current density, (c) Tafel slopes and (d) HER onset potential, with their corresponding error bars for bare GC and ZrS_2 before and after electrochemical treatment.

Figure S6. The effect of electrochemical treatment on HER performance of TiSe₂. (a) Linear sweep voltammograms for HER in acidic electrolyte on TiSe₂ (black line), TiSe₂ after -1.6 V treatment (red line) and TiSe₂ after +1.5 V treatment (blue line) deposited on a GC electrode. Presented in the bar charts are the averages of the (b) overpotential at -10 mA cm⁻² current density, (c) Tafel slopes and (d) HER onset potential, with their corresponding error bars for bare GC and TiSe₂ before and after electrochemical treatment.

Figure S7. The effect of electrochemical treatment on HER performance of ZrSe₂. (a) Linear sweep voltammograms for HER in acidic electrolyte on ZrSe₂ (black line), ZrSe₂ after -1.25 V treatment (red line) and ZrSe₂ after +1.5 V treatment (blue line) deposited on a GC electrode. Presented in the bar charts are the averages of the (b) overpotential at -10 mA cm⁻² current density, (c) Tafel slopes and (d) HER onset potential, with their corresponding error bars for bare GC and ZrSe₂ before and after electrochemical treatment.

Figure S8. The effect of electrochemical treatment on HER performance of HfSe₂. (a) Linear sweep voltammograms for HER in acidic electrolyte on HfSe₂ (black line), HfSe₂ after -1.25 V treatment (red line) and HfSe₂ after +1.5 V treatment (blue line) deposited on a GC electrode. Presented in the bar charts are the averages of the (b) overpotential at -10 mA cm⁻² current density, (c) Tafel slopes and (d) HER onset potential, with their corresponding error bars for bare GC and HfSe₂ before and after electrochemical treatment.

Figure S9. The effect of electrochemical treatment on HER performance of TiTe₂. (a) Linear sweep voltammograms for HER in acidic electrolyte on TiTe₂ (black line), TiTe₂ after -1.6 V treatment (red line) and TiTe₂ after +1.1 V treatment (blue line) deposited on a GC electrode. Presented in the bar charts are the averages of the (b) overpotential at -10 mA cm⁻² current density, (c) Tafel slopes and (d) HER onset potential, with their corresponding error bars for bare GC and TiTe₂ before and after electrochemical treatment.

Figure S10. The effect of electrochemical treatment on HER performance of ZrTe₂. (a) Linear sweep voltammograms for HER in acidic electrolyte on ZrTe₂ (black line), ZrTe₂ after -1.6 V treatment (red line) and ZrTe₂ after +1.1 V treatment (blue line) deposited on a GC electrode. Presented in the bar charts are the averages of the (b) overpotential at -10 mA cm⁻² current density, (c) Tafel slopes and (d) HER onset potential, with their corresponding error bars for bare GC and ZrTe₂ before and after electrochemical treatment.

Figure S11. The effect of electrochemical treatment on HER performance of HfTe₂. (a) Linear sweep voltammograms for HER in acidic electrolyte on HfTe₂ (black line), HfTe₂ after -1.6 V treatment (red line) and HfTe₂ after +1.1 V treatment (blue line) deposited on a GC electrode. Presented in the bar charts are the averages of the (b) overpotential at -10 mA cm⁻² current density, (c) Tafel slopes and (d) HER onset potential, with their corresponding error bars for bare GC and HfTe₂ before and after electrochemical treatment.