Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

A fullerene alloy based photovoltaic blend with a glass transition above 200 °C

Amaia Diaz de Zerio Mendaza,¹ Armantas Melianas,² Ferry A. A. Nugroho,³ Olof Bäcke,³

Eva Olsson,³ Christoph Langhammer,³ Olle Inganäs² and Christian Müller^{1,*}

- ¹ Department of Chemistry and Chemical Engineering, Chalmers University of Technology,
- 41296 Göteborg, Sweden

² Biomolecular and Organic Electronics, IFM, Linköping University, 58183 Linköping, Sweden

³ Department of Physics, Chalmers University of Technology, 41296 Göteborg, Sweden

*e-mail: <u>christian.muller@chalmers.se</u>

Fig. S1 Rate by which the peak wavelength $\Delta \lambda_{peak}$ of the plasmonic resonance changes with temperature, $d(\Delta \lambda_{peak})/dT$, i.e. the slope. The onset of the glass transition temperature T_g is defined as the first point where the value of $d(\Delta \lambda_{peak})/dT$ deviates from the initial linear region.

Fig. S2 Plasmonic nanospectroscopy second heating scan of neat PTB7.

Fig. S3 (a) TGA scans of PTB7, 1:1 C_{60} : C_{70} and 2:1:1 PTB7: $C_{60}C_{70}$, (b) DSC second heating thermograms of PTB7 and 2:1:1 PTB7: C_{60} : C_{70} (heating rate 20 °C min⁻¹). The TGA measurement of 2:1:1 PTB7: C_{60} : C_{70} was performed on material that was drop-cast from *o*-DCB and dried under vacuum for two days.

Fig. S4 The peak wavelength $\Delta\lambda_{peak}$ of the plasmonic resonance recorded during the first, second and third heating scans of the same 2:1:1 PTB7:C₆₀:C₇₀ film, using a heating rate of 5 °C min⁻¹ and a natural cooling rate within a temperature interval of 60 to 250 °C.

Fig. S5 AFM topography images of 2:1:1 PTB7: C_{60} : C_{70} thin films: as spin-coated (left), after annealing for 10 min at 190 °C (centre), and 240 °C (right). AFM images were recorded between crystallites. The surface roughness R_{rms} was 0.4 nm, 0.5 nm and 0.5 nm, respectively.

Fig. S6 (a) Electroluminescence (EL) and photoluminescence (PL) spectra of reference PTB7 and 2:1:1 PTB7: C_{60} : C_{70} after annealing at temperatures ranging from RT to 300 °C for 10 min.

Fig. S7 Plasmonic nanospectroscopy first (red) and second heating scan (blue) of 2:1:1 TQ1:C₆₀:C₇₀. The intersection of the straight line fits (black) indicate a thermal transition, which we interpret as the glass transition temperature $T_g \sim 141$ °C and 182 °C, respectively (inset: chemical structure of TQ1).