Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supporting information for

Facile synthesis of TiO₂/Mn₃O₄ hierarchical structures for fiber-shaped flexible asymmetric supercapacitor with ultrahigh stable and tailorable performance

Rui Lin^{a b}, Zihan Zhu^{a c}, Xiang Yu ^d, Ying Zhong ^a, Zilong Wang ^a, Shaozao Tan^b, Chuanxi Zhao*^a, Wenjie Mai*^a

^aSiyuan laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, P.R.China.
^bDepartment of Chemistry, Jinan University, Guangzhou, Guangdong 510632, China
^cDepartment of Materials Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China

E-mail: tcxzhao@email.jnu.edu.cn, wenjiemai@email.jnu.edu.cn

Contents:

Calculation methods

- 1. Electrode
- 2. Device

Calculation methods

1. Electrode

Moreover, the linear capacitance (C_i) and volume capacitance (C_v) of the electrode were given and the formula (1, 2) of the CV curve is put as follows:

$$C_{l} = \frac{\int IdU}{L\Delta U} = \frac{S}{2Lv\Delta U_{P}}$$
(1)

$$C_{\nu} = \frac{\int I dU}{V \Delta U} = \frac{S}{2V \nu \Delta U_{\nu}}$$
(2)

Where ΔU_P is potential window, S is the area of the closed CV curve, v is scan rate and L/V is effective linear/volume of the working electrode.

2. Device

The linear capacitance (C_{cell-L}) and volume capacitance (C_{cell-V}) of the device were calculated from the CV curves by the following formulas (3, 4):

$$C_{cell-L} = \frac{\int I dU}{L\Delta U} = \frac{S}{2Lv\Delta U_V}$$
(3)

$$C_{cell-V} = \frac{\int IdU}{V\Delta U} = \frac{S}{2Vv\Delta U_V}$$
(4)

Where ΔU_V is voltage window, S is the area of the closed CV curve, v is scan rate and L/V is effective length/volume of the device.

Additionally, the volume capacitance (C_{cell-v}) of the device based GCD curves can be calculated from the following equation:

$$C_{cell-V} = \frac{I\Delta t}{\Delta U_V}$$
(5)

Where I is the discharge current, Δt is the discharge time, ΔU_V is the voltage window. And the energy and power density could be estimated by the following formulas (6, 7):

$$E = \frac{C_{cell-V} \Delta U_V^2}{2V} \tag{6}$$

$$P = \frac{E}{\Delta t} \tag{7}$$

Where the C_{cell-V} is the volume capacitance of the working device from formulas (5), ΔU_V is the voltage window. V is the effective volume and Δt is the discharge time of GCD curves.

Fig. S1 (a) Voltage-time variation in electrodeposition process, which could reveal the stable voltage when applying slight current at 0.5 mA to the working electrode. (b) Pourbaix (E-pH) diagram of 0.1 M $Mn-H_2O$ system, which shows the thermodynamic stability of possible phases and ionic species in the deposition solution at different pH values and potentials in 70 °C. (c) Various electrodeposition time and corresponding electrochemical performance of the electrodes.

Fig. S2 SEM images of the Mn_3O_4 electrode and TiO_2/Mn_3O_4 electrode. (a) Typical image of the fiber-shaped Mn_3O_4 electronic. (b) Cross-sectional image of the Mn_3O_4 nanostructure covering on single carbon fiber. (c) SEM image of the Mn_3O_4 nanospines. (c) SEM image of the fiber-shaped TiO_2/Mn_3O_4 electronic with many typical urchin-like Mn_3O_4 nanospines. (d) Cross-sectional image of the TiO_2/Mn_3O_4 nanostructure covering on single carbon fiber.

Fig. S3 (a) Schematic illustrating the synthesis procedure of MoS_2 electrode. (b) Typical image of the fiber-shaped MoS_2 -coated electrode. (c) Cross-sectional image of the CF. (d) TEM image of the MoS_2 structure, insets show the typical lamellar structure of MoS_2 .

Fig. S4 (a) Different scan rates of CV curves for fiber-shaped MoS_2 electrode. (b) Galvanostatic charge/discharge curves at different current for fiber-shaped MoS_2 electrode.

Fig. S5 Cycle stability for fiber-shaped $MoS_2//TiO_2/Mn_3O_4$ ASC device measured at 100 mV s⁻¹.

Device	Electrode material	Capacitance	Energy	Power	Cycle	Time
configuration			density	density	test	
Parallel	MnO ₂	2.5 F cm ⁻³	0.22	0.4 W	84 % at	2012
			mWh	cm⁻³	10000	[29]
			cm-3		cycles	
Parallel	CNT/MnO₂	25.4 F cm ⁻³	3.52	127 mW	n.a.	2014
			mWh	cm ⁻³		[10]
			cm ⁻³			
Parallel	MnO₂@CNT	9.1 mF cm ⁻¹	0.78	20 mW	84.8 %	2015
			mWh	cm ⁻³	at 1000	[9]
			cm ⁻³		cycles	
Parallel	rGO@MnO₂@PPy	12.4 F cm ⁻³	0.20	150 mW	92 % at	2015
			mWh	cm⁻³	4950	[13]
			cm ⁻³		cycles	
Parallel	MnO₂/rGO/CF//GH/CW	2.54 F cm ⁻³	0.9	0.2 W	90 % at	2015
			mWh	cm⁻³	10000	[28]
			cm⁻³		cycles	
Parallel	N-MoO _{3-x} //MnO ₂ @TiN	10.3 mF cm ⁻¹ /	2.29	1.64 W	80.3 %	2016
		4.1 F cm ⁻³	mWh	cm⁻³	at 5000	[30]
			cm-3		cycles	
Parallel	MoS ₂ //TiO ₂ /Mn ₃ O ₄	15.28 mF cm ⁻	11.4	2.34 W	90.2 %	This
		¹ /19.84 F cm ⁻³	mWh	cm⁻³	at 3000	work
			cm⁻³		cycles	

 Table S1
 Electrochemical performances of some previous fiber-shaped supercapacitors

References:

9. Pu, X.,Li, L.,Liu, M.,Jiang, C.,Du, C.,Zhao, Z.,Hu, W.; Wang, Z. L., Adv. Mater. 28 (2016) 98-105.

10. Wang, B., Fang, X., Sun, H., He, S., Ren, J., Zhang, Y.; Peng, H., Adv Mater 27 (2015) 7854-60.

13. Huang, Y.,Hu, H.,Huang, Y.,Zhu, M.,Meng, W.,Liu, C.,Pei, Z.,Hao, C.,Wang, Z.; Zhi, C., ACS nano 9 (2015) 4766-75.

28. Zhang, Z., Xiao, F.; Wang, S., J. Mater. Chem. A 3 (2015) 11215-11223.

29. Xiao, X.,Li, T.,Yang, P.,Gao, Y.,Jin, H.,Ni, W.,Zhan, W.,Zhang, X.,Cao, Y.,Zhong, J.,Gong, L.,Yen, W. C.,Mai, W.,Chen, J.,Huo, K.,Chueh, Y. L.,Wang, Z. L.; Zhou, J., ACS nano 6 (2012) 9200-6.

30. Yu, M., Cheng, X., Zeng, Y., Wang, Z., Tong, Y., Lu, X.; Yang, S., Angew. Chem. 55 (2016) 6762-6.