## Supporting Information

# Rational Design and Synthesis of LiTi<sub>2</sub>(PO<sub>4</sub>)<sub>3-x</sub>F<sub>x</sub> Anode Materials for

### **High-Performance Aqueous Lithium Ion Batteries**

Huaiqing Wang,<sup>ab</sup> Hongzhang Zhang,<sup>ac</sup> Yi Cheng,<sup>ab</sup> Kai Feng,<sup>\*a</sup> Xianfeng Li,<sup>ac</sup> Huamin Zhang<sup>\*ac</sup>

<sup>a</sup>Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
<sup>b</sup>University of Chinese Academy of Sciences, Beijing 100039, China
<sup>c</sup>Collaborative Innovation Center of Chemistry for Energy Materials, Dalian, 116023, China

### Synthesis Details of the LiTi<sub>2</sub>(PO<sub>4</sub>)<sub>3-x</sub>F<sub>x</sub>(x=0,0.06,0.12,0.18)Samples

Firstly, CH<sub>3</sub>COOLi, Ti(OBu)<sub>4</sub>, H<sub>3</sub>PO<sub>4</sub> and citric acid were dissolved in absolute ethyl alcohol, respectively. Then, Ti(OBu)<sub>4</sub>, CH<sub>3</sub>COOLi, H<sub>3</sub>PO<sub>4</sub> solutions were slowly added into citric acid solution in sequence under continuous stirring. Stoichiometric LiF was finally added into the solution. After stirring for 4 h, a yellow homogeneous solution was formed. Several milliliters of water were added into the obtained solution to accelerate the hydrolysis of Ti(OBu)<sub>4</sub> and generate a transparent gel. After evaporating the ethanol at 80 °C in water bath, the obtained dry gel was ground and heated in a tube furnace at 350 °C for 4 h under a flowing Ar atmosphere. The collected power was reground and calcined at 750 °C for 15 h with a ramping rate of 5 °C min<sup>-1</sup> under a flowing Ar atmosphere to obtain the final samples.

### **Preparation Details of Electrode for ARLBs**

The LTP and LMO electrodes were made by a similar method. The electrodes were obtained by rolling the mixture of active material, activated carbon, Super P carbon and PTFE in a weight ratio of 70:10:10:10 into a film, which was then pressed onto a stainless steel mesh after drying at 120 °C for 12 h. The loading mass density of LTP electrode is 10~18 mg cm<sup>-2</sup>, which is 2-5 times higher than previous reports. The mass ratio of LMO to LTP was 1.5~2. The Li<sub>2</sub>SO<sub>4</sub> electrolyte was pre-treated by flowing argon injection into the solution to eliminate the soluble oxygen. Charge and discharge tests were conducted in the voltage window of 0.8-2.0 V on a Land automatic battery tester (Wuhan, China) at room temperature. The current density (A g<sup>-1</sup>) or rate (C) is calculated based on the mass of anode active materials (including 11 % carbon content). The specific capacity (mAh g<sup>-1</sup>), energy density (Wh Kg<sup>-1</sup>), and power density (W Kg<sup>-1</sup>) are based on the total mass of active electrode materials (anode + cathode).

### The equivalent circuit of Nyquist plots

The intercept at the Z' axis in the high frequency range corresponds to the ohmic resistance ( $R_{\Omega}$ ), which presents the resistance of the electrolyte and electrode materials. The semicircle in the middle frequency range indicates the charge transfer resistance

 $(R_{ct})$ . The inclined line in the low frequency presents the Warburg impedance (W), which is associated with the diffusion of lithium ions in the solid matrix. A simplified equivalent circuit model has been constructed to analyze the impedance spectra. A constant phase element (CPE) represents the double layer capacitance.

#### The Calculation Method of Li<sup>+</sup> Diffusion Rate

| $D_{Li^+} = R^2 T^2 / 2A^2 n^4 F^4 C^2 \sigma^2$ | (s1) |
|--------------------------------------------------|------|
| $Z'=Re+R_{ct}+\sigma\omega^{-1/2}$               | (s2) |

where R is the gas constant, T is the absolute temperature, A is the surface area of the anode, n is the number of electrons per molecule during oxidization, F is the Faradayconstant, C is the concentration of Li<sup>+</sup>,  $\sigma$  is the Warburg factor which has a relationship with Z' as shown in Eq. (s2), Re is the resistance between the electrolyte and electrode, R<sub>ct</sub> is the charge transfer resistance, and  $\omega$  is angle frequency. Figure 4c shows the relationship between Z' and square root of frequency ( $\omega^{-1/2}$ ) in the low-frequency region. The slope of the linearly fitting lines of Z' and  $\omega^{-1/2}$  is Warburg factor ( $\sigma$ ). According to Eq. (s1), it is easy to calculate the diffusion coefficient of Li<sup>+</sup> (D<sub>Li+</sub>).



Figure S1. (a)-(d) Nitrogen adsorption–desorption isotherm of  $LiTi_2(PO_4)_{3-x}F_x$  samples : (a) LTP, (b) LTP-F<sub>0.06</sub>, (c) LTP-F<sub>0.12</sub>, (d) LTP-F<sub>0.18</sub>.



Figure S2. (a) Charge/discharge profiles of the  $\text{LiTi}_2(\text{PO}_4)_{3-x}F_x$  samples at 1 C in organic half-cell; (b) Charge/discharge profiles at 10 C; (c) Discharge capacities from 1 C to 40 C; (d) Cycle performances at 10 C.



Figure S3. (a) Band structure of LTP; (b) Band structure of F-doped LTP. The band gap is 2.504 eV (for LTP) and 1.931 eV (for F-doped LTP), respectively.

| Sample                | a/Å    | c/Å      | Cell volume/Å <sup>3</sup> |
|-----------------------|--------|----------|----------------------------|
| LTP                   | 8.5451 | 20.9153  | 1527.24                    |
| LTP-F <sub>0.06</sub> | 8.5427 | 20.9055  | 1525.63                    |
| LTP-F <sub>0.12</sub> | 8.5369 | 20.8888  | 1522.35                    |
| LTP-F <sub>0.18</sub> | 8.5034 | 20.76184 | 1501.24                    |

Table S1. Structure parameters obtained from Rietveld refinement of XRD data for  $LiTi_2(PO_4)_{3-x}F_x$ 

Table S2. Kinetic parameters of  $LiTi_2(PO_4)_{3-x}F_x$  samples

| Sample                | $R_{ct}\left(\Omega ight)$ | σ     | $D_{Li^+}$ (cm <sup>2</sup> s <sup>-1</sup> )/EIS |
|-----------------------|----------------------------|-------|---------------------------------------------------|
| LTP                   | 150                        | 12.08 | $1.26 \times 10^{-12}$                            |
| LTP-F <sub>0.06</sub> | 80                         | 3.31  | 1.68× 10 <sup>-11</sup>                           |
| LTP-F <sub>0.12</sub> | 35                         | 3.51  | $1.49 \times 10^{-11}$                            |
| LTP-F <sub>0.18</sub> | 60                         | 5.17  | $6.90 \times 10^{-12}$                            |