Graphene Hydrogel Based Counter Electrode for High Efficiency Quantum Dot Sensitized Solar Cells

Hua Zhang,*a Cheng Yang,a Zhonglin Du,a Dengyu Pan*b and Xinhua Zhong*c

a Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China

b Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China

c College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China

*Corresponding author

Email: <u>zhanghjy@ecust.edu.cn</u> (H. Zhang), zhongxh@ecust.edu.cn (X. Zhong), dypan617@shu.edu.cn (D. Pan)

Phone/Fax: +86 21 6425 0281

Preparation of CdSeTe-sensitized photoanodes.

Mesoporous TiO₂ film were prepared by screen printing method according to our previous work.¹ It is composed of a 9.0 μ m transparent layer and a 6.0 μ m scattering layer. The synthesis CdSeTe QDs, ligand exchange for receiving water-soluble QDs, and deposition of QDs on TiO₂ film are all referred to that reported.²⁻⁴ The assensitized electrodes were then immersed in TiCl₄ aqueous solution (containing 0.02 M TiCl₄ and 0.01 M thioglycolic acid) at 40 °C for 30 min followed by rinsing with water and ethanol alternately. Finally, the electrodes were coated with ZnS for four cycles by immersing them into 0.1 M Zn(OAc)₂ and 0.1 M Na₂S solutions in ethanol for 1 min/dip in turn and followed by coating with SiO₂ through soaking the electrodes in 0.01 M tetraethyl orthosilicate ethanol solution for 2 h with subsequently rinsing with ethanol and dried in air.

Figure S1. Raman spectra of GO and GH-CuS hybrid.

Figure S2. Photograph of homogeneous aqueous dispersion of GO, the mixture of GO and CuS, and the resultant cylinder of GH-CuS.

Figure S3. Equivalent circuit for fitting EIS in this work.

Figure S4. CV curves of GH, GH-CuS, and CuS/FTO

Figure S5. Photograph of GH-CuS cylinders prepared under different hydrothermal reaction times.

Table S1. Parameters extracted from *J-V* and EIS of GH-CuS CEs prepared at different hydrothermal reaction times.

Time	$V_{\rm oc}(V)$	$J_{\rm sc}({\rm mA/cm^2})$	FF(%)	PCE(%)	$R_s(\Omega)$	$R_{ctl}(\Omega)$	$R_{ct2}(\Omega)$
3 h	0.739	19.93	60.99	8.98	2.89	0.79	1.45
6 h	0.742	20.24	62.93	9.45	2.72	0.73	1.02
9 h	0.752	20.40	65.03	9.97	2.61	0.67	0.62
12 h	0.753	20.41	65.08	9.99	2.54	0.65	0.61

Figure S6. FESEM images of GH-CuS CEs prepared at different pressures of 5 (a), 7 (b), 11 Mpa (c) and linearity of the film thickness vs pressure (inset in b).

Figure S7. J-V and EIS for GH-CuS CEs with different pressures.

Table S2.	Parameters	extracted	from	J-V	and	EIS	of	GH-CuS	CEs	prepared	at
different pr	essures										

Pressure	$V_{\rm oc}({ m V})$	$J_{\rm sc}({\rm mA/cm^2})$	FF(%)	PCE(%)	$R_s(\Omega)$	$R_{ctl}(\Omega)$	$R_{ct2}(\Omega)$
5 MPa	0.739	20.26	63.95	9.57	3.02	0.58	0.88
7 MPa	0.756	20.37	65.16	10.03	2.99	0.40	0.79
9 MPa	0.755	20.22	63.93	9.76	3.01	0.49	0.82
11 MPa	0.747	20.28	63.51	9.62	3.23	1.14	0.62

References

- 1 Z. L. Du, H. Zhang, H. L. Bao and X. H. Zhong, J. Mater. Chem. A, 2014, 2, 13033-13040.
- 2 Z. X. Pan, K. Zhao, J. Wang, H. Zhang, Y. Y. Feng and X. H. Zhong, ACS Nano,

2013, 7, 5215-5222.

- 3 K. Zhao, Z. X. Pan, I. Mora-Seró, E. Cánovas, H. Wang, Y. Song, X. Q. Gong, J. Wang, M. Bonn, J. Bisquert and X. H. Zhong, *J. Am. Chem. Soc.*, 2015, **137**, 5602-5609.
- 4 Z. W. Ren, J. Wang, Z. X. Pan, K. Zhao, H. Zhang, Y. Li, Y. X. Zhao, I. Mora-Seró, J. Bisquert and X. H. Zhong, *Chem. Mater.*, 2015, **27**, 8398-8405.