Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supporting Information

N-type Doping for Efficient Polymer Electrontransporting Layers in Perovskite Solar Cells

Yunlong Guo,^{a,*} Wataru Sato,^a Kento Inoue,^a Weifeng Zhang,^b Gui Yu^{b,*} and Eiichi Nakamura^{a,*}

^aDepartment of Chemistry, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

*E-mail: guoyunlong@chem.s.u-tokyo.ac.jp; nakamura@chem.s.u-tokyo.ac.jp

^bBeijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese

Academy of Sciences, Beijing 100190, P. R. China.

*Email: <u>yugui@iccas.ac.cn</u>

Figure S1. Morphology and X-ray diffraction analysis based perovskite films on PEDOT:PSS surface.

Figure S2. The effects of PEIE in the solar cells (a) with PNDI-2T/0.5 wt%N-DMBI as ETL and (b) with PCBM as ETL. Scanning rate is 0.01V/0.01s.

Figure S3. Comparing the stability of devices with doped ETL (blue) and nondoped ETLs (red).

Figure S4. J-V characteristics of solar cell scanning forward and reverse. (a) Typical J-V curves of the solar cell scanning forward (red) and reverse (blue) with a scan rate of 0.01V/0.01s. (b) PCE distribution of 70 devices with ETL of PNDI-2T/0.5 wt% N-DMBI scanning forward (red) and reverse (blue). (c) Typical J-V curves of the solar cell scanning forward (red) and reverse (blue) with a scan rate of 0.01V/0.1s. (d) PCE

distribution of 15 devices with ETL of PNDI-2T/0.5 wt%N-DMBI scanning forward (red) and reverse (blue).

Figure S5. J-V curves of solar cell with about 14 nm PNDI-2T/0.5wt% N-DMBI as ETL under a scan rate of 0.01V/0.01s.

Figure S6. UV-vis spectrum (a) and electron spin resonance spectroscopy (ESR) (b) based on PNDI-2T/0.5 wt%N-DMBI materials from slow-drying the solution.