1	Supporting Information for
2	Alleviating polarization by designing ultrasmall Li $_2$ S nanocrystals
3	encapsulated in N-rich carbon as a cathode material for high-capacity,
4	long-life Li-S batteries
5 6 7 8	ChenjiHu,ª HongweiChen, ^{b*} YanpingXie,ª Liang Fang, ^c JianhuiFang,ª JiaqiangXu,ª HongbinZhao,ª* JiujunZhang ^{a,d}
9 10 11 12 13 14 15 16 17	 A. College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China. b. College of Material Science and Engineering, HuaQiao University, Xiamen 361021, China c. Department of Physics, Institute of Low-dimensional Carbons and Device Physics, Shanghai University, Shanghai 200444, China. d. NRC Energy, Mining and Environment, National Research Council of Canada, 4250 Wesbrook Mall, VancouverV6T 1W5, Canada. *Corresponding author E-mail: chenhwei@hqu.edu.cn(H. W.Chen); hongbinzho@shu.edu.cn (H. B. Zhao)
18	1. Experimental Section:
19	1.1 Materials preparation
20	The Nano Li ₂ S@NRC composites:
21	Li ₂ S(Alfa Aesar, China), anhydrous ethanol(Sigma-Aldrich, China), PAN (Mw=150,000,
22	Sigma-Aldrich, China) were used as pristine materials. 200mg Li_2S were added into
23	10ml anhydrous ethanol to prepare the light yellow solution under stirring. Then
24	above-mentioned solution was slowly dropped into the PAN/DMF solution(20 mgml ⁻
25	¹).The mass ratio between Li_2S and PAN was 1:1.The mixed solution was heated at
26	150° C to evaporate the solvent in the argon atmosphere under stirring. The
27	resultant solid materials were stabilized at 280° C with a heating rate of 2° Cmin ⁻¹ , and
28	subsequently carbonized at 700° C for 1 hour with a heating rate of 5° Cmin ⁻¹ in
29	argon atmosphere to finally obtain the Nano Li ₂ S@NRC cathode materials.
30	
31	The Micro Li ₂ S@NRC composites:
32	200mg commercial Li_2S were added into the PAN/DMF solution(20 mg ml ⁻¹).The

1 mass ratio between Li_2S and PAN was 1:1. The solution was heated at 150° C to 2 evaporate the DMF solvent in the argon atmosphere under stirring. The resultant 3 solid materials were stabilized at 280° C with a heating rate of 2° Cmin⁻¹, and 4 subsequently carbonized at 700° C for 1 hour with a heating rate of 5° Cmin⁻¹ in 5 argon atmosphere to finally obtain the micro-Li₂S@NRC cathode materials.

6

7 The Micro-Li₂S:

8 The commercial Li₂S power was purchased from Alfa Aesar, China.

9

10 1.2 Characterization

The as-prepared samples were characterized using a Scanning Electron Microscope (SEM) (FEI Quanta 400 FEG). Transmission electron microscope (TEM) images were recorded using a Tecnai G2 F20 S-TWIN equipped with energy dispersive X-ray microanalysis (EDX) at 200 kV. XRD was recorded using a Bruker D8 diffractometer, using Cu K_aradiation. Sulfur content of the samples was analyzed using an elemental analyzer (CHNS, Vario EL Cube, Elementar), and the vendor specified uncertainty of the elemental analysis measurements is within ±0.01%.

18

19 1.3 Electrochemical measurement

Due to the sensitivity of Li₂S to moisture, all the electrode preparation and cell 20 assembly procedures were carried out in an argon-filled glove box (H_2O and O_2) 21 concentrations < 0.1 p.p.m). The nano-Li₂S@NRC composites were grounded with 22 acetylene black (AB, Alfa Aesar, China) and polyvinylidene fluoride (PVDF) binder in a 23 weight ratio of 7: 2: 1 using a mortar and pestle, followed by dispersion in N-methyl-24 2-pyrrolidinone (NMP, Alfa Aesar, China) to form a slurry. After 12 hours stirring, the 25 26 slurry was then coated onto aluminum foil using doctor blade and dried at 60°C in vacuum to form the working electrode, and the mass loading of Li₂S was about 1.53 27 mg cm⁻². 2025-type coin cells were assembled using lithium foil as the counter 28 electrode. The cathode was separated from a lithium anode by a separator (Celgard 29

1 2400). The electrolyte used was 1M LiTFSI in a mixed solvent of DOL and DME at a 2 volume ratio of 1:1, containing 1wt% LiNO₃.Galvanostatic cycling tests of the coin 3 cells was conducted using Neware battery test system (Shenzhen Neware technology 4 Co., Ltd) at different rates between 1.5 and 2.8V after the first charge to 3.8V at 0.05 5 C in order to activate the Li₂S.Cyclic voltammograms (CV) were recorded with a coin 6 cell using an AutoLab electrochemical workstation (PGSTAT302N) at a scan rate of 7 0.1 mVs⁻¹. The AC impedance of freshly prepared cells was measured at the open 8 circuit potential (OCP), using an AutoLab electrochemical workstation (PGSTAT302N). 9 The AC testing voltage amplitude was ±5 mV, and the frequency ranged from 100 10 kHz to 0.1 Hz.

11

12 2. Supplemental figures and tables

- 13
- 14
- 15

Table S1.Eler	iental analysis of Nano-Li ₂ S@NRC materials

Element	Li	S	С	Н	Ν
Wt%/element		44.38	28.37	0.71	7.93
Wt%/composition	62.99(Li ₂ S)		3	7.01 (NRC)	

16

Figure S1.(a-b). The TEM photograph of micro-Li₂S@NRC material with

different resolution

20

19

4 Figure S2. The charge/discharge profile of nano-Li₂S@NRC cathode at 0.25C.

1 2

3

Figure. S4 The Coulombic efficiency of the nano-Li₂S@NRC cathode at 0.5 C. Table S2. Comparison of electrochemical performance of previous works

	Initial	Current	Cycle	Stable	Decay	
Cathodes	capacity	density	number	capacity	rate per	ref
	(mAh/g			after cycle	cycle	
Li ₂ S/HNG	1190	1C	500	689	0.084%	1
Nano-cluster Li ₂ S	1186	0.1C	50	919	0.43%	2
Nano Li ₂ S/rGO	1288	0.5C	145	994	0.15%	3
Meso-Li ₂ S/C	1149	0.5C	100	732	0.365%	4
Porous Li₂S@C	971	0.08C	200	622	0.179%	5
Li ₂ S/ pyrrole	1478	0.2C	100	936	0.36%	6
NanalisaNDC	1503	0.25C	100	1107	0.26%	This
Natio Li23@INRC	1376	0.5C	500	811	0.041%	work
pPAN-S/GN	1500	0.1C	50	1000	0.66%	7

⁴ Note: the capacity of Li₂S-based cathode is calculated base on sulfur.

6 References

7	1.	Y. Qiu, G. Rong, J. Yang, G. Li, S. Ma, X. Wang, Z. Pan, Y. Hou, M. Liu, F. Ye, W. Li, Z. W. Seh, X.
8		Tao, H. Yao, N. Liu, R. Zhang, G. Zhou, J. Wang, S. Fan, Y. Cui and Y. Zhang, Advanced Energy
9		Materials, 2015, 5,1501369
10	2.	L. Suo, Y. Zhu, F. Han, T. Gao, C. Luo, X. Fan, YS. Hu and C. Wang, Nano Energy, 2015, 13,
11		467-473.
12	3.	C. Wang, X. Wang, Y. Yang, A. Kushima, J. Chen, Y. Huang and J. Li, Nano letters, 2015, 15,
13		1796-1802.
14	4.	F. Ye, Y. Hou, M. Liu, W. Li, X. Yang, Y. Qiu, L. Zhou, H. Li, Y. Xua and Y. Zhang, Nanoscale,
15		2015, 7, 9472-9476.
16	5.	S. Liang, C. Liang, Y. Xia, H. Xu, H. Huang, X. Tao, Y. Gan and W. Zhang, Journal of Power
17		Sources, 2016, 306, 200-207.
18	6.	L. Chen, Y. Liu, M. Ashuri, C. Liu and L. L. Shaw, Journal of Materials Chemistry A, 2014, 2,
19		18026-18032.
20	7.	L. Yin, J. Wang, F. Lin, J. Yang and Y. Nuli, Energy & Environmental Science, 2012, 5, 6966-
21		6972.

⁵