Supplementary Information

Three-dimensional NiCo₂O₄@NiWO₄ core-shell nanowire arrays for

high performance supercapacitor

Sanming Chen^a, Guang Yang^a, Yi Jia^b, Huajun Zheng^{a,c,*}

^a Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou 310014, China

^b Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, QLD, Australia

^c State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang

University of Technology, Hangzhou 310014, China

* E-mail: zhenghj@zjut.edu.cn

Fig. S1 EDS analysis of NiCo₂O₄@NiWO₄ hybrid nanowires (8h).

Fig. S2 Wide-scan XPS spectra of NiCo₂O₄@NiWO₄ hybrid nanowires (8h).

Fig. S3 N₂ adsorption-desorption isotherms of (a) NiCo₂O₄ nanowires and (b) NiCo₂O₄@NiWO₄ hybrid nanowires (the inset shows the pore size distribution).

Fig. S4 SEM image of $NiCo_2O_4@NiWO_4$ electrode (8h) after charge-discharge for 6000 cycles.

Fig. S5 (a) CV curves of the NiCo₂O₄@NiWO₄ hybrid electrode (8 h)//AC ASC device collected at various potential windows from 1.2 to 1.7 V; (b) CV curves of the ASC device at different scan rates from 2 to 50 mV s⁻¹; (c) GCD curves of the ASC device at various current densities from 1 to 10 A g⁻¹; (d) Ragone plot of the as-fabricated ASC device.

Fig. S6 (a, b) SEM image of the NiCo₂O₄@NiO hybrid nanowires; (c) CV curves of NiCo₂O₄@NiO hybrid electrode at different scan rates from 5 to 60 mV s⁻¹; (d) GCD curves of NiCo₂O₄@NiO hybrid electrode at various current densities from 1 to 10 A g^{-1} .

NiCo₂O₄@NiO hybrid nanowires are prepared for comparison with NiCo₂O₄@NiWO₄ hybrid nanowires. The morphology and electrochemical performance of NiCo₂O₄@NiO hybrid nanowires are shown in Fig. S5. It can be seen that NiCo₂O₄ nanowires are decorated with NiO nanosheets, forming highly porous core-shell heterostructures. The NiO nanosheets are interconnected with each other and there are abundant space between neighboring nanowires. A pair of redox peaks can be clearly observed in each CV curve (Fig.S5c), indicating that the capacitance is mainly based on the Faradaic redox mechanism. The NiCo₂O₄@NiO hybrid electrode delivers a specific capacitance of 1220.8, 1147.1, 1067, 1011.7 and 981.5 F g⁻¹ at a current density of 1, 2, 5, 8 and 10 A g⁻¹, respectively. The capacitance retention is 80.4% when the current density is increased from 1 A g⁻¹ to 10 A g⁻¹. Therefore, NiCo₂O₄@NiWO₄ hybrid electrode.

Types of materials	Areal (specific) capacitance	Rate capability	Cycling stability	Ref.
NiCo ₂ O ₄ @NiCo ₂ O ₄ core /shell nanoflake arrays	1.55 F/cm ² at 2 mA/cm ²	74.8% retention from 2 to 40 mA/cm ²	98.6% retention after 4000 cycles at 5 mA/cm ²	1
NiCo ₂ O ₄ @MnO ₂ nanowire arrays	3.31 F/cm ² at 2 mA/cm ²	50.2% retention from 2 to 20 mA/cm ²	88% retention after 2000 cycles at 10 mA/cm ²	2
NiCo ₂ O ₄ @TiN core/shell nanowires	998 mF/cm ² at 2 mA/cm ²	58.3% retention from 2 to 20 mA/cm ²	72.2% retention after 2000 cycles at 10 mA/cm ²	3
NiCo ₂ O ₄ @NiMoO ₄ nanowire/nanosheet arrays	5.80 F/cm ² at 10 mA/cm ²	83.6% retention from 10 to 80 mA/cm ²	81.8% retention after 5000 cycles at 50 mA/cm ²	4
MnMoO ₄ /CoMoO ₄ heterostructured nanowires	204.1 F/g at 0.5 A/g	66% retention from 0.5 to 3 A/g	98% retention after 1000 cycles at 20 A/g	5
NiCo ₂ O ₄ @MnMoO ₄ core/shell Nanoflowers	1118 F/g at 1 A/g	66.7% retention from 1 to 10 mA/cm²	87.85% retention after 5000 cycles at 1 A/g	6
$NiCo_2O_4@Ni_3S_2$ nanothorn arrays	1716 F/g at 1A/g	64.3% retention from1 to 20 A/g	83.7% retention after 2000 cycles at 4 A/g	7
NiCo ₂ O ₄ @MnMoO ₄ Nanocolumn Arrays	1705.3 F/g at 5 mA/cm ²	62.3% retention from 1 to 20 mA/cm ²	92.6% retention after 5000 cycles	8
NiCo2O4@CoMoO4 nanowire/nanoplate arrays	1280.2 F/g at 10 mA/cm ²	65.8% retention from 10 to 60 mA/cm ²	74.1% retention after 1000 cycles at 60 mA/cm ²	9
NiCo ₂ O ₄ @Co _x Ni _{1-x} (OH) ₂ nanosheet arrays	987.3 F/g at 5 A/g	83.7% retention from1 to 50 A/g	88.3% retention after 3000 cycles	10
$ZnCo_2O_4@NiCo_2O_4$ core/sheath nanowires	1476 F/g at 1 A/g	63.8% retention from 1 to 20 A/g	98.9% retention after 2000 cycles at 10 A/g.	11
NiCo ₂ O ₄ @NiWO ₄ core/shell Nanowires	1384 F/g at 1 A/g	85.5% retention from 1 to 10 A/g	87.6% retention after 6000 cycles at 5 A/g	This work

Table S1 The electrochemical properties of the NiCo2O4@NiWO4 hybrid electrode (8h) compared with other references.

References

- 1 X. Y. Liu, S. J. Shi, Q. Q. Xiong, L. Li, Y. J. Zhang, H. Tang, C. D. Gu, X. L. Wang and J. P. Tu, ACS Appl. Mater. Interfaces, 2013, **5**, 8790-8795.
- 2 L. Yu, G. Q. Zhang, C. Z. Yuan and X. W. Lou, *Chem. Commun.*, 2013, **49**, 137-139.
- 3 R. Q. Wang, C. Xia, N. N. Wei and H. N. Alshareef, *Electrochim. Acta*, 2016, **196**, 611-621.
- 4 D. Cheng, Y. F. Yang, J. L. Xie, C. J. Fang, G. Q. Zhang and J. Xiong, *J. Mater. Chem. A*, 2015,
 3, 14348-14357.
- 5 L. Q. Mai, F. Yang, Y. L. Zhao, X. Xu, L. Xu and Y. Z. Luo, *Nat. Commun.*, 2011, **2**, 503-507.
- 6 Z. X. Gu and X. J. Zhang, J. Mater. Chem. A, 2016, 4, 8249-8254
- 7 J. P. Wang, S. L. Wang, Z. C. Huang and Y. M. Yu, J. Mater. Chem. A, 2014, 2, 17595-17601.
- 8 C. Y. Cui, J. T. Xu, L. Wang, D. Guo, M. L. Mao, J. M. Ma and T. H. Wang, ACS Appl. Mater. Interfaces, 2016, **8**, 8568-8575.
- 9 D. P. Cai, B. Liu, D. D. Wang, L. L. Wang, Y. Liu, H. Li, Y. R. Wang, Q. H. Li and T. H. Wang, J.
 Mater. Chem. A, 2014, 2, 4954-4960.
- K. B. Xu, R. J. Zou, W.Y. Li, Q. Liu, X.J. Liu, L. Ana and J. Q. Hu, J. Mater. Chem. A, 2014, 2, 10090-10097.
- 11 Y. P. Huang, Y. E. Miao, H. Y. Lu and T. X. Liu, *Chem. Eur. J.*, 2015, **21**, 10100-10108.