Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Battery-Like Supercapacitors from Diamond Networks

and Water-Soluble Redox Electrolytes

Siyu Yu,^a Nianjun Yang,^{*a} Hao Zhuang,^a Soumen Mandal,^b Oliver A. Williams,^b Bing Yang,^c

Nan Huang,^c Xin Jiang*a

^a Institute of Materials Engineering, University of Siegen, 57076 Siegen, Germany

^b School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, UK

^c Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR),

Chinese Academy of Sciences (CAS), No.72 Wenhua Road, Shenyang 110016 China

E-mail: nianjun.yang@uni-siegen.de; xin.jiang@uni-siegen.de

Table of Content

Table S1. Capacitance comparison of diamond based electrochemical capacitors.

Figure S1. Performance of a diamond PC using Fe(CN)₆^{3-/4-} redox electrolytes.

Figure S2. Performance of a diamond PC using other water-soluble redox electrolytes.

Figure S3. Performance of a diamond network PC using water-soluble redox electrolytes.

Figure S4. Performance of diamond symmetric EDLC and PC devices.

References

Туре	Capacitor Electrode	Capacitance	Electrolyte	Ref.
		[mF cm ⁻²]		
EDLC	Diamond	$(4-7) \times 10^{-3}$	Na ₂ SO ₄	1
	Diamond network	3.53	Na_2SO_4	This work
	Diamond/Silicon nanowires Diamond foam	0.1	PMPyrrTFSI + propylene	2
			carbonate	
		1.5	Et ₃ NH TFSI	3
		0.60	NaClO ₄	4
		0.44	PMPyrrTFSI + propylene	4
			carbonate	
	Honeycomb diamond	1.97	H_2SO_4	5
		3.91	H_2SO_4	6
		0.67	TEABF ₄ + propylene	7
			carbonate	
	Porous diamond	3	LiClO ₄	8
	BDD/TiO ₂	7.46	NaNO ₃	9-11
	TiO ₂ /BDD/Ta	5.23	Na ₂ SO ₄	12
	BDD/Nanotube	0.58	PBS	13
РС	Diamond	41.51	$Na_2SO_4 + Fe(CN)_6^{3-/4-}$	This work
	Diamond network	73.42	$Na_2SO_4 + Fe(CN)_6^{3-/4-}$	This work
	MnO ₂ /Diamond	7.82	Na ₂ SO ₄	1
	Ni(OH) ₂ /Diamond	91	NaOH	14
	Nanowire			

Table S1. Capacitance comparison of diamond nanostructures based electric double layer capacitors (EDLCs) and pseudocapacitors (PCs).

Figure S1. Performance of a diamond PC using $Fe(CN)_6^{3-/4-}$ redox electrolytes. (a) Cyclic voltammograms of 0.05 M $Fe(CN)_6^{3-/4-}$ in 1.0 M Na₂SO₄ at the scan rates of 10, 20, 50, and 100 mV s⁻¹. (b) Charge/discharge curves of 0.05 M $Fe(CN)_6^{3-/4-}$ in 1.0 M Na₂SO₄ at the current densities of 1.0, 2.0, and 5.0 mA cm⁻². (c) Cyclic voltammograms of $Fe(CN)_6^{3-/4-}$ with the concentrations of 0.01, 0.05, 0.1, and 0.2 M in 1.0 M Na₂SO₄ at the scan rate of 10 mV s⁻¹. (d) Capacitance comparison calculated from cyclic voltammogramms at different scan rates and different sconcentrations of $Fe(CN)_6^{3-/4-}$. (e) Nyquist plots in the frequency range of 10⁶ - 0.01 Hz with and without 0.05 M $Fe(CN)_6^{3-/4-}$ in 1.0 M Na₂SO₄ as the electrolyte. (f) Capacitance

retention at a charge/discharge current density of 5 mA cm^2 in 0.05 M $Fe(CN)_6{}^{3\text{-/-}}$ + 1.0 M Na_2SO_4 .

Figure S2. Performance of a diamond PC using other water-soluble redox electrolytes. (a) Cyclic voltammograms of 0.1 M hydroquinone in 1.0 M H_2SO_4 . (b) Cyclic voltammograms of 2 mM FcTMAPF₆ in 0.1 KCl. The scan rates were 10, 20, 50, and 100 mV s⁻¹.

Figure S3. Performance of a diamond network PC using water-soluble redox electrolytes. (a) Cyclic voltammograms of 0.05 M Fe(CN)₆^{3-/4-} in 1.0 M Na₂SO₄ at the scan rates of 10, 20, 50, and 100 mV s⁻¹. (b) Charge/discharge curves of 0.05 M Fe(CN)₆^{3-/4-} in 1.0 M Na₂SO₄ at current densities of 1.0, 2.0, and 5.0 mA cm⁻². (c) Nyquist plots in the frequency range of 10⁶ - 0.01 Hz with and without 0.05 M Fe(CN)₆^{3-/4-} in 1.0 M Na₂SO₄ as the electrolyte.

Figure S4. Performance of diamond symmetric EDLC and PC devices. (a) Charge/discharge curves of a diamond EDLC device in 1.0 M Na₂SO₄ at the current density of 1.0, 2.0, 5.0 and 10.0 μ A cm⁻². (b) Ragone plots of a diamond EDLC device in 1.0 M Na₂SO₄ with a cell voltage of 1.0, 2.0 and 2.4 V. (c) Charge/discharge curves of a diamond PC device in 0.05 M Fe(CN)₆^{3-/4-} + 1.0 M Na₂SO₄ at the current density of 1.0, 2.0, 5.0 and 10.0 mA cm⁻². (d) Ragone plots of a diamond PC device in 0.05 M Fe(CN)₆^{3-/4-} + 1.0 M Na₂SO₄ with a cell voltage of 1.0, 2.0 and 2.4 V.

- 1. S. Yu, N. Yang, H. Zhuang, J. Meyer, S. Mandal, O. A. Williams, I. Lilge, H. Schönherr and X. Jiang, *The Journal of Physical Chemistry C*, 2015, **119**, 18918-18926.
- F. Gao, G. Lewes-Malandrakis, M. T. Wolfer, W. Müller-Sebert, P. Gentile, D. Aradilla, T. Schubert and C. E. Nebel, *Diamond Relat. Mater.*, 2015, 51, 1-6.
- D. Aradilla, F. Gao, G. Lewes-Malandrakis, W. Müller-Sebert, D. Gaboriau, P. Gentile, B. Iliev, T. Schubert, S. Sadki, G. Bidan and C. E. Nebel, *Electrochemistry Communications*, 2016, 63, 34-38.
- 4. F. Gao, M. T. Wolfer and C. E. Nebel, *Carbon*, 2014, **80**, 833-840.
- 5. K. Honda, T. N. Rao, D. A. Tryk, A. Fujishima, M. Watanabe, K. Yasui and H. Masuda, J. *Electrochem. Soc.*, 2000, **147**, 659-664.
- K. Honda, T. N. Rao, D. A. Tryk, A. Fujishima, M. Watanabe, K. Yasui and H. Masuda, J. Electrochem. Soc., 2001, 148, A668-A679.
- M. Yoshimura, K. Honda, R. Uchikado, T. Kondo, T. N. Rao, D. A. Tryk, A. Fujishima,
 Y. Sakamoto, K. Yasui and H. Masuda, *Diamond Relat. Mater.*, 2001, 10, 620-626.
- 8. C. Hébert, E. Scorsone, M. Mermoux and P. Bergonzo, *Carbon*, 2015, **90**, 102-109.
- 9. K. Siuzdak, R. Bogdanowicz, M. Sawczak and M. Sobaszek, *Nanoscale*, 2015, 7, 551-558.
- 10. M. Sobaszek, K. Siuzdak, M. Sawczak, J. Ryl and R. Bogdanowicz, *Thin Solid Films*, 2016, **601**, 35-40.
- 11. M. Sawczak, M. Sobaszek, K. Siuzdak, J. Ryl, R. Bogdanowicz, K. Darowicki, M. Gazda and A. Cenian, *Journal of The Electrochemical Society*, 2015, **162**, A2085-A2092.
- C. Shi, H. Li, C. Li, M. Li, C. Qu and B. Yang, *Applied Surface Science*, 2015, 357, Part B, 1380-1387.
- C. Hébert, J. P. Mazellier, E. Scorsone, M. Mermoux and P. Bergonzo, *Carbon*, 2014, 71, 27-33.
- 14. F. Gao and C. E. Nebel, *physica status solidi* (a), 2015, **212**, 2533-2538.