Supplementary Information

Li-ion and Na-ion transportation and storage properties in various sized TiO₂ spheres with hierarchical pores and high tap density

Yong Li,‡^{ab} Shuan Wang,‡^a Yan-Bing He,*^a Linkai Tang,^{ab} Yusuf Valentino Kaneti,^a Wei Lv,^a Zhiqun Lin,^c Baohua Li,*^a Quan-Hong Yang^a and Feiyu Kang^{ab}

^{a.} Engineering Laboratory for the Next Generation Power and Energy Storage Batteries, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China. *E-mail: he.yanbing@sz.tsinghua.edu.cn; libh@mail.sz.tsinghua.edu.cn.

^{b.} Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, PR China.

^{c.} School of Materials Science and Engineering, Georgia Institute of Technology Atlanta, GA 30332, USA.

‡ These authors contributed equally to this work.

Figure S1. SEM images of amorphous TiO_2 spheres: (a) $TiO_2(2:1)$, (b) $TiO_2(1:1)$, (c) $TiO_2(1:2)$ and (d) $TiO_2(1:4)$. The ratios of the precursor to absolute alcohol in each TiO_2 sphere are shown in the parentheses.

Figure S2. XPS spectra of TiO_2 spheres: (a) $TiO_2(2:1)$, (b) $TiO_2(1:1)$, (c) $TiO_2(1:2)$ and (d) $TiO_2(1:4)$.

Figure S3. Raman spectrum of graphene oxide annealed at 450 °C.

Figure S4. TGA curves of TiO_2 spheres: (a) $TiO_2(2:1)$, (b) $TiO_2(1:1)$, (c) $TiO_2(1:2)$ and (d) $TiO_2(1:4)$.

Figure S5. The electrochemical properties of the $TiO_2(1:4)$ electrode with and without the addition of GO.

Calculation of diffusion coefficient

Electrochemical impedance spectroscopy (EIS) measurements were performed to evaluate diffusion coefficient (D) through nanospheres. D was calculated according to the following equation (1)¹:

$$D = \frac{R^2 T^2}{2A^2 n^4 F^4 C^2 \sigma^2}$$
(1)

where *R* is the gas constant, *T* is the absolute temperature, A is the product of BET surface area and mass of TiO_2 spheres used on the electrode, *n* is the number of electrons transferred in the half-reaction for the redox couple and *F* is the Faraday constant.

C is the concentration of ions, calculated according to the literature² and the ion concentration has been calculated in the condition of half lithiated state of TiO_2 :

The lithium ion insertion process of TiO₂ is as following:

$$TiO_2 + xLi^+ + xe^- \rightarrow Li_xTiO_2 (0 \le x \le 1)$$

Since the EIS was measured at half discharge state, thereby, TiO_2 is half lithiated state. Then the C value is calculated according to the following equation (2):

$$C = \frac{\frac{1}{2}\rho}{M}$$
(2)

where ρ is the tap density, M is the molar mass.

 σ is the Warburg factor, which is related to Z_{re} according to Equation (3), and can be obtained from the slope of $Z_{re} \sim \omega^{-1/2}$ plot as shown in the inset of Figure 5e and 6f.

$$Z_{re} = R_s + R_{SEI} + R_{ct} + \sigma \omega^{-\frac{1}{2}}$$
(3)

Ref	Synthetic method	Morphology	Carbon	Capacity(1C)
	methou		content(wt.70)	
this work	80°C drying	spheres	3%	180 mAh g ⁻¹
3	template+hydrot hermal	hollow spheres	10.5%	175 mAh g ⁻¹
4	hydrothermal	nanocrystals	6%	120 mAh g ⁻¹
5	Hydrothermal	hollow spheres		130 mAh g ⁻¹
6	freeze dry+hydrotherm al	nanocrystals	67%	170 mAh g ⁻¹
7	hydrothermal	microspheres	8.9%	185 mAh g ⁻¹
8	sol-gel	nanocrystals	48%	170 mAh g ⁻¹
9	hydrothermal	nanostructure	8%	180 mAh g ⁻¹
10	hydrothermal	mesocrystals	6.28%	164.9 mAh g ⁻¹
11	hydrothermal	dendritic		151 mAh g ⁻¹ (0.1 C)
12	hydrothermal	hierarchical spheres	20.8%	169 mAh g ⁻¹

Table S1. Comparison of electrochemical performance of the as-prepared TiO_2 spheres ($TiO_2(1:4)$) with recently reported literatures for LIBs.

Ref	Synthetic method	Morphology	Carbon content(wt.%)	Rate (0.1 C) performance	Cycling performance
this	80°C	spheres	3%	220 mAh g ⁻¹	1 C, 195 cycles,
work	drying				90.5% retention
13	hydrother mal	nanoparticles		~200 mAh g ⁻¹ (125 mA g ⁻¹)	125 mAh g ⁻¹ , 200 cycles,
					97% retention
14	template+ ALD	nanoarrays		240 mAh g ⁻¹ (50 mA g ⁻¹)	50 mA g ⁻¹ , 50 cycles,
					82.9% retention
15	hydrother mal+	hollow nanospheres	75%	~250 mAh g ⁻¹ (50 mA g ⁻¹)	40 mA g ⁻¹ , 500 cycles,
	template	x			72.2% retention
16	hydrother mal	nanoparticles		60 mAh g ⁻¹ (33.5 mA g ⁻¹)	
17	sol-gel			~170 mAh g ⁻¹ (50 mA g ⁻¹)	
18	electrospi nning	nanofibers	1.85%	~205 mAh g ⁻¹ (67 mA g ⁻¹)	2 C, 200 cycles, ~90%
19	sol-gel	composite	19.6%	227 mAh g ⁻¹ (50 mA g ⁻¹)	50 mA g ⁻¹ , 50 cycles,
					~92.1%
20	hydrother	microsphere	6.8%	160 mAh g ⁻¹	0.1 C, 50 cycles,
	mal				~100%
21	alkyl halide	porous composites	45%	~150 mAh g ⁻¹ (42 mA g ⁻¹)	42 mA g ⁻¹ , 50 cycles,
	eliminatio				

Table S2. Comparison of the electrochemical performance of the as-prepared TiO_2 spheres ($TiO_2(1:4)$) with recently reported literatures for SIBs.

	n			>90%
22	Electron- Beam	nanotube arrays	 ~105 μA cm ⁻² (5 μA)	
	Melting			

References

- 1 S. S. Zhang, K. Xu, T. R. Jow, *Electrochim. Acta*, 2004, 49, 1057.
- 2 X. Wang, H. Hao, J. Liu, T. Huang, A. Yu, *Electrochim. Acta*, 2011, 56, 4065.
- 3 H. Liu, W. Li, D. Shen, D. Zhao, G. Wang, J. Am. Chem. Soc., 2015, 137, 13161.
- 4 Z. Zhang, L. Zhang, W. Li, A. Yu, P. Wu, *ACS Appl. Mater. Interfaces*, 2015, 7, 10395.
- 5 C. Han, D. Yang, Y. Yang, B. Jiang, Y. He, M. Wang, A.-Y. Song, Y.-B. He, B. Li, Z. Lin, *J. Mater. Chem. A*, 2015, **3**, 13340.
- 6 B. Qiu, M. Xing, J. Zhang, J. Am. Chem. Soc., 2014, 136, 5852.
- 7 X. Yan, Y. Li, F. Du, K. Zhu, Y. Zhang, A. Su, G. Chen, Y. Wei, *Nanoscale*, 2014, 6, 4108.
- 8 W. Li, F. Wang, S. Feng, J. Wang, Z. Sun, B. Li, Y. Li, J. Yang, A. A. Elzatahry,
 Y. Xia, J. Am. Chem. Soc., 2013, 135, 18300.
- 9 X. Xin, X. Zhou, J. Wu, X. Yao, Z. Liu, ACS Nano, 2012, 6, 11035.
- 10 J. Ye, W. Liu, J. Cai, S. Chen, X. Zhao, H. Zhou, L. Qi, *J. Am. Chem. Soc.*, 2010,
 133, 933.
- Z. Sun, J. H. Kim, Y. Zhao, F. Bijarbooneh, V. Malgras, Y. Lee, Y.-M. Kang, S. X. Dou, *J. Am. Chem. Soc.*, 2011, **133**, 19314.

J. S. Chen, Y. L. Tan, C. M. Li, Y. L. Cheah, D. Luan, S. Madhavi, F. Y. C.
Boey, L. A. Archer, X. W. Lou, *J. Am. Chem. Soc.*, 2010, **132**, 6124.

13 J.-Y. Hwang, S.-T. Myung, J.-H. Lee, A. Abouimrane, I. Belharouak, Y.-K. Sun, *Nano Energy*, 2015, **16**, 218.

14 Y. Xu, M. Zhou, L. Wen, C. Wang, H. Zhao, Y. Mi, L. Liang, Q. Fu, M. Wu, Y. Lei, *Chem. Mater.*, 2015, 27, 4274.

15 D. Su, S. Dou, G. Wang, Chem. Mater., 2015, 27, 6022.

16 M. Søndergaard, K. Dalgaard, E. Bøjesen, K. Wonsyld, S. Dahl, B. Iversen, J. Mater. Chem. A, 2015, **3**, 18667.

17 H. Usui, S. Yoshioka, K. Wasada, M. Shimizu, H. Sakaguchi, *ACS Appl. Mater*. *Interfaces*, 2015, **7**, 6567.

18 Y. Yeo, J.-W. Jung, K. Park, I.-D. Kim, Sci. Rep., 2015, 5, 13862.

19 C. Fu, T. Chen, W. Qin, T. Lu, Z. Sun, X. Xie, L. Pan, *Ionics*, 2016, 22, 555.

20 S.-M. Oh, J.-Y. Hwang, C. S. Yoon, J. Lu, K. Amine, I. Belharouak, Y.-K. Sun, ACS Appl. Mater. Interfaces, 2014, 6, 11295.

21 J. Lee, Y.-M. Chen, Y. Zhu, B. D. Vogt, ACS Appl. Mater. Interfaces, 2014, 6, 21011.

22 Z. Bi, M. P. Paranthaman, P. A. Menchhofer, R. R. Dehoff, C. A. Bridges, M. Chi, B. Guo, X.-G. Sun, S. Dai, *J. Power Sources*, 2013, **222**, 461.