Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supporting Information Contents

Heterotriangulene-based unsymmetrical squaraine dyes: synergistic effects of donor moiety and out-of-plane branched alkyl chains on dye cell performance

Neeta Karjule^{†,‡}, Munavvar Fairoos MK⁺ and Jayaraj Nithyanandhan^{*,†,‡}

 *Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, CSIR-Network of Institutes for Solar Energy, Dr. Homi Bhaba Road, Pune, India-411008.
*Academy of Scientific and Innovative Research, New Delhi 110025, India.

To whom correspondence should be addressed: j.nithyanandhan@ncl.res.in

CONTENTS

- NMR and Mass data
- Theoretical calculations
- Supplementary photovoltaic performance
- Supplementary references

Figure S4. ¹H NMR (200 MHz, CDCl₃) spectrum of compound 1c.

e S6. HRMS spectrum of 1c.

Figure S10. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2b.

Figure S12. HRMS spectrum of 2b.

Figure S14. ¹³C NMR (100 MHz, DMSO- d_6) spectrum of compound 3a.

Figure S16. ¹H NMR (200 MHz, DMSO- d_6) spectrum of compound **3b**.

Figure S18. HRMS spectrum of 3b.

methyleneindoline-5-carboxylic acid.

Figure S21. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 3c.

e S25. HRMS spectrum of 4b.

Figure S27. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 4c.

ure S29. ¹H NMR (200 MHz, DMSO- d_6) spectrum of compound NSQ1.

Figure S30. ¹³C NMR (100 MHz, DMSO- d_6) spectrum of compound NSQ1.

gure S31. HRMS spectrum of NSQ1.

Figure S33. ¹³C NMR (100 MHz, DMSO- d_6) spectrum of compound NSQ2.

Figure S35. ¹H NMR (400 MHz, CDCl₃) spectrum of compound NSQ3.

Figure S39. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 5b.

Figure S41. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 5c.

Figure S43. HRMS spectrum of 5c.

Figure S45. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound NSQR.

Figure S46. HRMS spectrum of dye NSQR.

Theoretical calculations

Figure S47. Isodensity surface plots of the HOMO, HOMO-1, LUMO and LUMO+1 of NSQ sensitizers.^{S1}

Table S1. Selected dihedral angles of NSQs were calculated from the optimized ground stategeometry

NSQ Dyes	Dihedral angle (degree)							
	θ_1	θ_2	θ_3	θ_4				
NSQR	47.06	-0.33	-178.08	-				
NSQ1	-0.05	0.05	-179.6	-				
NSQ2	-0.43	0.57	-177.65	-				
NSQ3	0.61	-0.24	-178.57	-176.66				

Figure S48. Distance between sp³-C (methyl group of HT) to –O atom of carboxylic acid, distance between the terminal carbon atomes of sp³-branched alkyl chain and sp³-C (indoline) to –O atom of carboxylic acid of **NSQ3** calculated from the optimized ground state geometry using density functional theory (DFT) at B3LYP/6-31G** level with the Gaussian 09 program.

Supplementary photovoltaic performance

Figure S49. *J–V* characteristics of **NSQR** and **NSQ1-3** with deviation of 5 cells measured under simulated AM 1.5 G simulated sunlight (100 mW cm⁻²).

Dye	<i>V_{oc}</i> (V)	J _{sc} (mA/cm²)	ff (%)	η (%)	Amount of adsorbed dyes (x 10 ⁻⁷ mol cm ⁻²) ^a
NSQ3/CDCA (1 eqv.)	0.541	20.11	65.6	7.14	0.94
NSQ3/CDCA (3 eqv.)	0.544	20.01	64.1	6.99	0.76
NSQ3/CDCA (5 eqv.)	0.541	19.51	63.2	6.67	0.64
NSQ3/CDCA (10 eqv.)	0.550	14.28	69.4	5.45	0.32

Table S2. Photovoltaic performance of NSQ3 with different ratios of CDCA.

^aby dye desorption method, carried out in 2M ethanolic HCl.

Figure S50. UV-Vis absorption spectra of desorbed NSQR and NSQ1-3 dyes in 2 M HCl in EtOH.

Figure S51. (a) Bode plot of **NSQ** dye cells (with an applied potential of -0.5 V), and (b) C_{μ} as a function of voltage (with an applied potential of -0.3 V).

Supplementary references

S1. Gaussian 09, Revision A. 02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone,V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino,J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi , R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski,V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian, Inc., Wallingford CT, 2009.