## **Electronic supplementary information**

Uniform nitrogen and sulphur co-doped hollow carbon nanospheres as efficient metal-free electrocatalysts for oxygen reduction

Chenghang You<sup>a,b</sup>, Xiaowei Jiang<sup>a</sup>, Leiyun Han<sup>a</sup>, Xianghui Wang<sup>a</sup>, Qiang Lin<sup>a\*</sup>, Yingjie Hua<sup>a</sup>, Chongtai Wang<sup>a\*</sup>, Xilong Liu<sup>a</sup>, Shijun Liao<sup>b\*</sup>

<sup>a</sup>School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou,571158, China

<sup>b</sup>The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China





Fig. S1 SEM images: (a) SN; (b) MSN; (c) SN/PA; (d) PAC-S; (e) PAC-3S (f) PAC-7S.









**Fig. S2**  $N_2$  adsorption-desorption isotherms: (a) PAC; (b) PAC-S; (c) PAC-3S; (d) PAC-7S. Pore-size distributions and cumulative volumes: (e) PAC; (f) PAC-S; (g) PAC-3S; (h) PAC-7S.









**Fig. S3** (a) XPS spectra of various catalysts. (b) N1s spectrum of PAC. (c) N1s spectrum of PAC-S. (d) N1s spectrum of PAC-3S. (e) N1s spectrum of PAC-7S. (f) S2p spectra of PAC-S. (g) S2p spectra of PAC-3S. (h) N1s spectrum of PAC-7S.



Fig. S4 Half-wave potential and current density of various catalysts.







**Fig. S5** LSV curves of obtained catalysts under different rotation rates: (a) PAC; (b) PAC-S; (c) PAC-3S; (d) PAC-5S; (e) PAC-7S.







**Fig. S5** K-L plots of as-prepared catalysts: (a) PAC; (b) PAC-S; (c) PAC-3S; (d) PAC-5S; (e) PAC-7S.

| No. | Catalyst            | Half-wave<br>potential* (E <sub>1/2</sub> ) | Reference                                                                                                                                            |
|-----|---------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | PAC-5S              | 46 mV inferior                              | Our work                                                                                                                                             |
| 2   | N-DC/G              | ~200 mV inferior                            | <ul> <li>B. Wang, S. M. Li, X. Y. Wu, J. H. Liu</li> <li>and J. Chen, <i>J Mater Chem A</i>, 2016, 4, 11789-11799.</li> </ul>                        |
| 3   | SG                  | ~150 mV inferior                            | Z. Ma, S. Dou, A. Shen, L. Tao, L. Dai<br>and S. Wang, <i>Angew Chem Int Edit</i> ,<br>2015, <b>54</b> , 1888-1892.                                  |
| 4   | CFO/NS+GO           | 71 mV inferior                              | W. Yan, X. Cao, J. Tian, C. Jin, K. Ke<br>and R. Yang, <i>Carbon</i> , 2016, <b>99</b> , 195-<br>202.                                                |
| 5   | NG-SCC <sub>f</sub> | ~110 mV inferior                            | <ul> <li>Y. P. Lei, Q. Shi, C. Han, B. Wang, N.</li> <li>Wu, H. Wang and Y. D. Wang, <i>Nano</i><br/><i>Research</i>, 2016, 9, 2498-2509.</li> </ul> |
| 6   | PNOHPC              | 83 mV inferior                              | <ul> <li>C. W. Deng, H. X. Zhong, X. F. Li, L.</li> <li>Yao and H. M. Zhang, <i>Nanoscale</i>, 2016,</li> <li>8, 1580-1587.</li> </ul>               |

 Table S1 Comparison of ORR performances of PAC-5S with some doped carbon catalysts

 recently reported.

\* compared with Pt/C catalyst.