Electronic Supplementary Information

An effective π -extended squaraine for solution-processed organic solar cell with high efficiency

Daobin Yang, ^{a,b} Hisahiro Sasabe, *,a Yan Jiao, ^b Taojun Zhuang, ^a Yan Huang, *,b Xuemei Pu, ^b Takeshi Sano, ^a Zhiyun Lu, ^b and Junji Kido *,a

^a Department of Organic Materials Science, Research Center for Organic Electronics (ROEL), Frontier Center for Organic Materials (FROM), Yamagata University, Yonezawa 992-8510, Japan. E-mail: h-sasabe@yz.yamagata-u.ac.jp; kid@yz.yamagata-u.ac.jp

^b College of Chemistry, Key Laboratory of Green Chemistry and Technology of Ministry of Education, Sichuan University, Chengdu 610064, China. E-mail: huangyan@scu.edu.cn

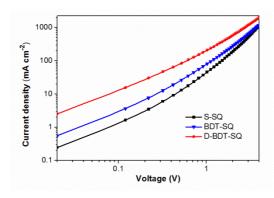
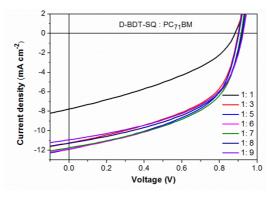
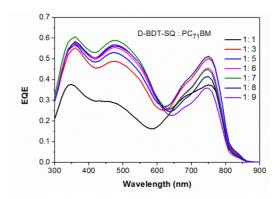
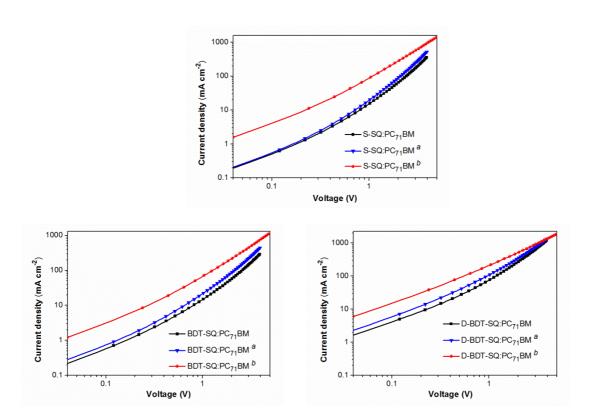



Fig. S1 *J-V* characteristic of the single hole-carrier devices based on neat film.


Table S1 Photovoltaic performances of OSCs based on **D-BDT-SQ**: PC₇₁BM blend films with different weight ratios.

Active layer (w/w)	$V_{ m oc}$	$J_{ m sc}$	FF	PCE a
Thickness (60 nm)	(V)	$(mA cm^{-2})$		(%)
1:1	0.88 (0.88)	7.77 (7.48)	0.38 (0.38)	2.60 (2.50)
1:3	0.90 (0.90)	11.25 (11.07)	0.50 (0.50)	5.06 (4.98)
1:5	0.90 (0.90)	11.90 (11.76)	0.50 (0.50)	5.35 (5.29)
1:6	0.92 (0.92)	11.85 (11.54)	0.51 (0.50)	5.56 (5.31)
1:7	0.91 (0.91)	11.75 (11.53)	0.52 (0.52)	5.56 (5.46)
1:8	0.92 (0.92)	11.27 (11.16)	0.51 (0.51)	5.29 (5.24)
1:9	0.93 (0.93)	10.93 (10.74)	0.51 (0.51)	5.18 (5.09)


^a Average values of 8 individual cells were given in parentheses.

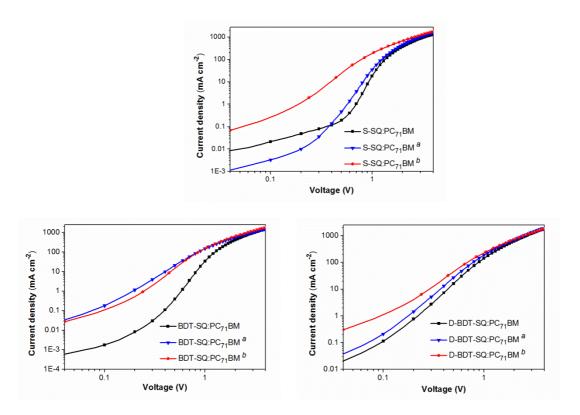
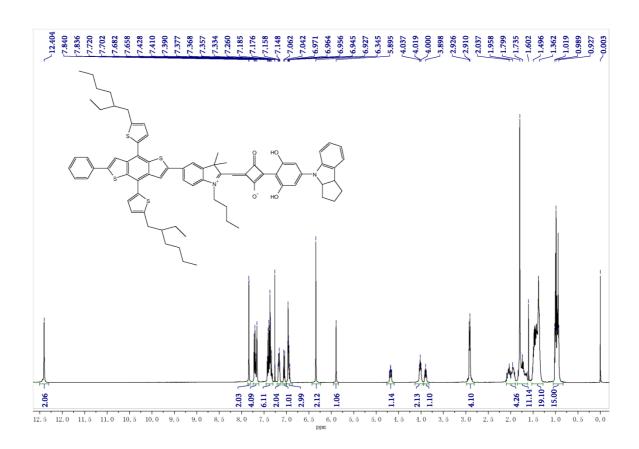
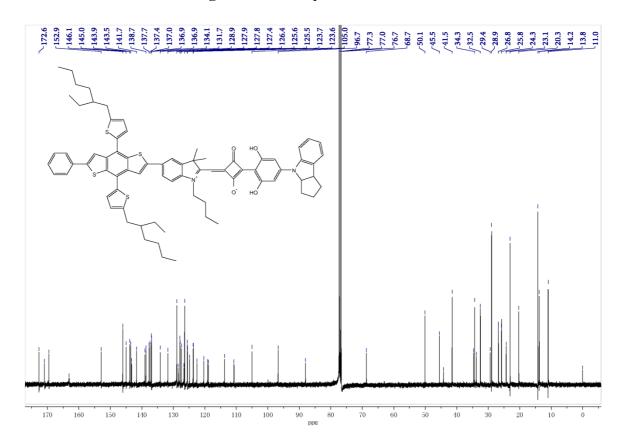

Fig. S2 *J-V* curve of OSCs devices based on **D-BDT-SQ**: PC₇₁BM blend films with different weight ratios.

Fig. S3 EQE curve of OSCs devices based on **D-BDT-SQ**: PC₇₁BM blend films with different weight ratios.

Fig. S4 *J-V* characteristic of the single hole-carrier devices based on SM:PC₇₁BM (1:7) blend film. ^a Thermally annealed devices (80 °C for 15 min). ^b Thermally tested devices (at 80 °C).

Fig. S5 *J-V* characteristic of the single electron-carrier devices based on SM:PC₇₁BM (1:7) blend film. ^a Thermally annealed devices (80 °C for 15 min). ^b Thermally tested devices (at 80 °C).

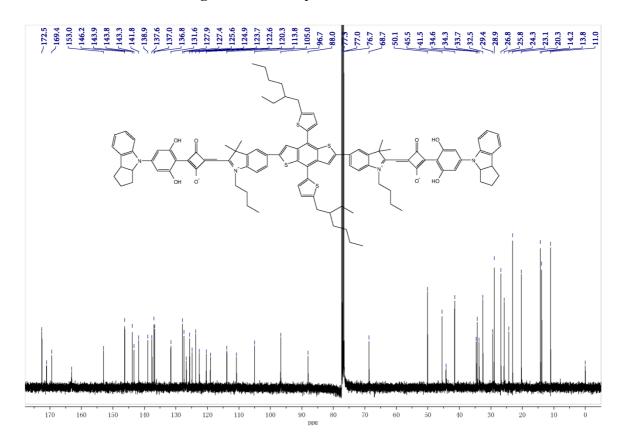

Fig. S6 ¹H NMR spectra of BDT-SQ

Fig. S7 ¹³C NMR spectra of **BDT-SQ** _{S5}

Fig. S8 ¹H NMR spectra of **D-BDT-SQ**

Fig. S9 ¹³C NMR spectra of **D-BDT-SQ** s6