Supplementary Information

Phosphate modified ceria as a Brønsted acidic/redox multifunctional catalyst

Nicholas C. Nelson, Zhuoran Wang, Pranjali Naik, J. Sebastián Manzano, Marek Pruski, Igor I. Slowing*

US DOE Ames Laboratory, Ames, Iowa 50011, United States Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States

Fig. S1 Measured P:Ce mole ratio after trimethylphosphate deposition onto CeO2 followed by calcination versus the nominal P:Ce mole ratio.

Fig. S2 STEM image and corresponding EDS elemental maps for CeO_2 -0.1PO_x. STEM analysis of CeO_2 -0.2PO_x is expected to be similar. STEM images of CeO_2 have been reported previously.¹

Fig. S3 DRIFT spectra of the materials with no pretreatment (i.e. as-synthesized) and no baseline correction in the (a) carbonate/phosphate and (b) hydroxyl regions. The band around 2100 cm-1 for CeO₂ has been proposed as either an electron transition from donor levels located near the conduction band such as Ce3+ or oxygen vacancies or the forbidden $2F^{5/2} \rightarrow 2F^{7/2}$ electronic transition of Ce³⁺ located at subsurface (or bulk) defective lattice sites.²⁻⁴

Fig. S4 XPS spectra in the (a) O 1s spectral region for CeO_2 , CeO_2 -0.1PO_x, and CeO_2 -0.2PO_x. (b) P 2p spectral region for phosphate functionalized materials.

Fig. S5 ³¹P{1H} CPMAS spectra of CeO2-0.1POx and CeO2-0.2POx. The spectra were obtained at 9.4 T using $v_R = 18$ kHz, $t_{CP} = 2.1$ ms, $v_{RF}(^{1}H CP) = 96$ kHz, $v_{RF}(31P CP) = 78$ kHz, $v_{RF}(^{1}H SPINAL-64) = 96$ kHz and 1024 scans.

Fig. S6 ¹H DPMAS spectrum of CeO₂, obtained at 14.1 T using $v_R = 38$ kHz, $v_{RF}(^{1}H 90^{\circ}) = 83.3$ kHz, $t_{rd} = 3$ s and 16 scans. The probe background was subtracted.

Fig. S7 ¹H DPMAS Hahn echo spectra of (a) CeO_2 -0.1PO_x and (b) CeO_2 -0.2PO_x. The spectra were obtained at 9.4 T using $v_R = 18$ kHz, $v_{RF}(^{1}H 90^{\circ}) = 96$ kHz, $t_{rd} = 7$ s, 64 scans/delay, and echo delays indicated in the figure.

Fig. S8 Comparison between ³¹P DPMAS (black) and ³¹P DQ-filtered DPMAS (red) spectra of CeO₂-0.2PO_x measured at 9.4 T. The ³¹P DPMAS spectrum was obtained using $v_R = 18$ kHz, $v_{RF}(^{31}P 90^\circ) = 83.3$ kHz, $v_{RF}(^{1}H SPINAL-64) = 100$ kHz, and 128 scans with $t_{rd} = 6$ s. ³¹P DQ-filtered DPMAS spectrum was obtained using $v_R = 18$ kHz, $v_{RF}(^{31}P 90^\circ) = 83.3$ kHz, $v_{RF}(^{1}H SPINAL-64) = 100$ kHz, $v_{RF}(^{31}P 90^\circ) = 83.3$ kHz, $v_{RF}(^{1}H SPINAL-64) = 100$ kHz, $v_{RF}(^{31}P 90^\circ) = 83.3$ kHz, $v_{RF}(^{1}H SPINAL-64) = 100$ kHz, $v_{RF}(^{31}P 90^\circ) = 83.3$ kHz, $v_{RF}(^{1}H SPINAL-64) = 100$ kHz, $v_{RF}(^{31}P 90^\circ) = 83.3$ kHz, $v_{RF}(^{1}H SPINAL-64) = 100$ kHz, $v_{RF}(^{31}P 90^\circ) = 83.3$ kHz, $v_{RF}(^{1}H SPINAL-64) = 100$ kHz, $v_{RF}(^{31}P 90^\circ) = 83.3$ kHz, $v_{RF}(^{1}H SPINAL-64) = 100$ kHz, $v_{RF}(^{31}P 90^\circ) = 83.3$ kHz, $v_{RF}(^{1}H SPINAL-64) = 100$ kHz, $v_{RF}(^{31}P 90^\circ) = 83.3$ kHz, $v_{RF}(^{1}H SPINAL-64) = 100$ kHz, v_{RF}

Fig. S9 Experimental DQ build-up curves measured at 9.4 T for (a) CeO_2 -0.1PO_x and (b) CeO_2 -0.2PO_x, using v_R = 18 kHz, v_{RF}(³¹P 90°) = 83.3 kHz, v_{RF}(¹H SPINAL-64) = 100 kHz, and 2048 scans with t_{rd} = 10 s for CeO₂-0.1PO_x and t_{rd} = 5 s for CeO₂-0.2PO_x. SIMPSON simulations of the DQ build-up curves for 2-spin model, without (c) and with (d) taking into account the effect of spin-spin relaxation (for the main ³¹P peak in CeO₂-0.2PO_x, a T2` value of 5.6 ms was measured at v_R = 18 kHz).

Fig. S10 Deconvoluted NH₃-TPD profiles for (a) CeO₂, (b) CeO₂-0.1PO_x, (c) CeO₂-0.2PO_x, which correspond to NH₃ integrated values of 0.61, 0.57, 0.68 mmol g⁻¹, respectively. The deconvoluted peaks with maxima around 110 °C and 160 °C (the two lowest temperature deconvoluted peaks) were common to all three materials. This indicates that the type of adsorbed NH₃ species is the same for all three materials and the low desorption temperature suggests they are multilayer and/or physisorbed species. These peaks were subtracted to determine the total number of acid sites. After correcting for physisorption, the acid site density for CeO₂ was 2.0 μ mol m⁻². This value agrees well with prior studies using NH3 adsorption microcalorimetry (1.9 ± 0.3 μ mol m⁻²).⁵⁻⁸ The similarity between the corrected CeO₂ acid site density to the literature values for ceria suggest this correction method is a good approximation to the true acid site density. The method was extended to the phosphate functionalized materials since the low temperature deconvoluted peaks are common to all materials. After correcting for physisorbed values for physisorbed/multilayer NH3 the integrated values for CeO₂, CeO₂-0.1PO_x, and CeO₂-0.2PO_x were 0.44, 0.41, 0.44 mmol g⁻¹, respectively.

Fig. S11 Recycling experiments using $CeO_2-0.2PO_x$ catalyst for the hydrolysis of propylene oxide. Conditions: ~40 mg catalyst, T = 60 °C, D₂O (1 mL), propylene oxide = ~2.4 mmol, t = 1 h. The catalyst:substrate ratio was maintained at 16.7 mg mmol⁻¹.

Fig. S12 PXRD patterns of the catalysts used for eugenol hydrogenolysis reaction.

 Table S1 Physicochemical properties of catalysts for eugenol hydrogenolysis.

Sample	BET Surface Area (m ² g ⁻¹) ^a	CeO₂ Crystallite Size (nm) ^b	Pd Dispersion (%) ^c	Pd Loading (wt. %) ^d
Pd/CeO ₂	121	7	64	1.0
Pd/CeO ₂ -0.1PO _x	111	9	7	1.0
Pd/CeO ₂ -0.2PO _x	112	10	9	1.1

^aSurface areas calculated using BET approximation.^bObtained from PXRD data using Scherrer equation. ^cCalculated from H₂ chemisorption data. ^dLoadings obtained from ICP analysis.

Fig. S13 Product distribution for the hydrogenolysis of eugenol over Pd/CeO₂, Pd/CeO₂-0.1PO_x, and Pd/CeO₂-0.2PO_x. The error bars represent the standard deviation from three separate reactions. Conditions: T = 100 °C, t = 4 h, P_{H2} = 10 bar, Pd:Eugenol = 5 mol. %, 25 mL H₂O.

Reaction			
	Allyl hydrogenation	Allyl + aromatic hydrogenation	Allyl + aromatic + methoxy hydrogenation/lysis
Product			
Catalyst	OH O O O O O O O O O O O O O O O O O O	OH 	OH
Pd/CeO ₂	16 ± 1	59± 4	25 ± 3
Pd/CeO ₂ -0.1PO _x	9.1 ± 2.5	36 ± 3	55 ± 4
$Pd/CeO_2-0.2PO_x$	37 ± 5	27 ± 3	36 ± 3

Table S2 Product distribution for the hydrogenolysis of eugenol over the three catalysts.^a

^aError bars represent the standard deviation from three separate reactions. Conditions: T = 100 °C, t = 4 h, P_{H2} = 10 bar, Pd:Eugenol = 5 mol. %, 25 mL H₂O.

Fig. S14 Cyclohexanol yield for the hydrogenolysis of guaiacol over Pd/CeO₂, Pd/CeO₂-0.1PO_x, and Pd/CeO₂-0.2PO_x. Conditions: T = 100 °C, t = 4 h, P_{H2} = 10 bar, Pd:Guaiacol = 5 mol. %, 25 mL H₂O.

neaction			
		Aromatic hydrogenation	Aromatic+ methoxy hydrogenation/lysis
	Reactant	Products	
	ОН	ŎН	ОН
Catalyst	Conversion	2-methoxycyclohexanol Yield	Cyclohexanol Yield (%)
Pd/CeO ₂	84	59	25
Pd/CeO ₂ -0.1PO _x	97	46	50
Pd/CeO ₂ -0.2PO _x	89	53	36

 Table S3 Conversion and selectivity data for guaiacol hydrogenolysis over the three catalysts.

 Reaction

REFERENCES

- 1. N. C. Nelson, J. S. Manzano, A. D. Sadow, S. H. Overbury and I. I. Slowing, ACS Catal., 2015, 5, 2051-2061.
- 2. C. Binet, M. Daturi and J.-C. Lavalley, Catal. Today, 1999, 50, 207-225.
- 3. C. Binet, A. Badri and J.-C. Lavalley, J. Phys. Chem., 1994, 98, 6392-6398.
- 4. F. Bozon-Verduraz and A. Bensalem, J. Chem. Soc., Faraday Trans., 1994, 90, 653-657.
- 5. D. Stošić, S. Bennici, V. Rakić and A. Auroux, Catal. Today, 2012, 192, 160-168.
- 6. M. G. Cutrufello, I. Ferino, R. Monaci, E. Rombi and V. Solinas, Top. Catal., 2002, 19, 225-240.
- 7. B. Bonnetot, V. Rakic, T. Yuzhakova, C. Guimon and A. Auroux, Chem. Mater., 2008, 20, 1585-1596.
- 8. X. Ge, S. Hu, Q. Sun and J. Shen, J. Nat. Gas Chem., 2003, 12, 119-122.