Supplementary Information for

Non-planar perylenediimide acceptors with different geometrical

linker units for efficient non-fullerene organic solar cells

Xi Liu,^{‡a} Tao Liu,^{‡b} Chunhui Duan,^a Junyi Wang,^a Shuting Pang,^a Wentao Xiong^b, Yanming Sun,^{*b} Fei Huang^{*a} and Yong Cao^a

^aState Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China. E-mail: msfhuang@scut.edu.cn

^bHeeger Beijing Research and Development Center, School of Chemistry and Environment, Beihang University, Beijing 100191, P. R. China. E-mail: <u>sunym@buaa.edu.cn</u>

Fig. S1 The TG curve of the acceptors.

Fig. S2 UV-vis absorption spectra of the three PDI acceptors and PDBT-T1 in solid states.

Fig. S3 UV-vis absorption spectra of the three PDI acceptors based blend films with/without DIO additive.

Fig. S4 Current-voltage (*I-V*) characteristics of the PDIs neat films in space-charge-limited current (SCLC) devices.

Table S1 Photovoltaic properties of OSCs based on PDBT-T1 and the PDI acceptors under AM 1.5 G at 100 mW cm⁻². The average values and standard deviation of device statistics from 10 devices.

	U				
PDBT-T1:PDIs	DIO (v/v)	$V_{\rm oc}$ (V)	$J_{\rm sc}~({ m mA~cm^{-2}})$	FF (%)	PCE (%)
P2O2	0%	0.910 ± 0.004	6.83 ± 0.10	34.8 ± 0.7	2.15 ± 0.08
	0.5%	0.876 ± 0.005	6.90 ± 0.08	41.4 ± 0.4	2.50 ± 0.04
P2N2	0%	0.963 ± 0.005	7.07 ± 0.14	37.6 ± 0.6	2.56 ± 0.08
	0.5%	0.946 ± 0.004	7.82 ± 0.10	50.8 ± 0.3	3.76 ± 0.08
P4N4	0%	0.982 ± 0.005	8.54 ± 0.12	49.7 ± 0.5	4.17 ± 0.08
	0.5%	0.957 ± 0.003	9.36 ± 0.07	62.6 ± 0.6	5.60 ± 0.09

Table S2 Photovoltaic properties of OSCs based on PTB7-Th and P4N4 under AM 1.5 G at 100 mW cm⁻². The average values and standard deviation of device statistics from 10 devices.

	ii : The average :	andes and standard	deviation of devia		ro devices.
	$V_{\rm oc}$ (V)	$J_{\rm sc}$ (mA cm ⁻²)	FF (%)	PCE (%)	Best PCE (%)
(a)	0.78 ± 0.01	9.48 ± 0.15	32.94 ± 1.08	2.43 ± 0.09	2.58
(b)	0.84 ± 0.01	10.71 ± 0.10	41.05 ± 0.53	3.67 ± 0.06	3.72

Fig. S5 ¹H NMR spectrum of P2O2 solution in CDCl₃.

Fig. S7 ¹H NMR spectrum of P4N4 solution in CDCl₃.

Fig. S8 $^{\rm 13}C$ NMR spectrum of P2O2 solution in CDCl_3.

Fig. S9 ¹³C NMR spectrum of P2N2 solution in CDCl₃.

Fig. S10 ¹³C NMR spectrum of P4N4 solution in CDCl₃.

Fig. S11 Mass (MALDI-TOF) spectrum of P2O2.

Fig. S12 Mass (MALDI-TOF) spectrum of P2N2.

Fig. S13 Mass (MALDI-TOF) spectrum of P4N4.