Supporting Information

Recycling of PE gloves waste as highly valuable products for efficient separation of oil-based contaminants from water

Qingdong Zhang ^a, Yingze Cao ^{a, b}, Na Liu ^a, Weifeng Zhang ^a, Yuning Chen ^a, Xin Lin ^a, Yen Wei ^a, Lin Feng ^a * and Lei Jiang ^c

- ^a Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- ^b Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing, 100094, China
- ^c Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing, 100191, P. R. China

fl@mail.tsinghua.edu.cn

Types of oil/water separation materials	Raw materials	Methods	Intrusion pressure	Separation efficiency	References
PE coated mesh	Recycled PE gloves, nontoxic	Simple immersion for several seconds, time-saving	6.5 kPa	99.9%	Our work
PDA-NDM mesh	Dopamine, n-dodecyl mercaptan, low-toxic	First immersion in solution of dopamine for 40 h, then reacted with NDM for 6h	2.18kPa	98.12%	42
Octadecylphosphonic acid (ODPA) coated mesh	Octadecylphosphonic acid, low- toxic	Simple immersion method	NA	99%	43
PTFE-containing coated mesh	Polytetrafluoroethylene, polyvinyl acetate, sodium dodecyl benzene sulfonate, fluorinated	Complicated spray and calcination method	NA	95%	8
Layered double hydroxides (LDH) functionalized textile	Magnesium nitrate hexahydrate, aluminum nitrate nonahydrate, low- toxic	SynthetizingLDHprecursorsandhydrothermallytreatedfor24h,finallythetextilewasimmersedinsolutionofsodiumlauratefor1	NA	97%	44
Silicone nanofilaments coated polyester textile	Trichloromethylsilane, high-toxic	Complicated CVD method	NA	High (qualitative description)	45

Bioinspired	Chromic acid, fluoroalkylsilane,	The foam was etched with	NA	95.5%-98%	46
multifunctional	high-toxic and fluorinated	chromic acid and then was			
polyurethane foam		modified with solution of			
		fluoroalkylsilane for 24h			
BNNT-coated mesh	Boron powder, NH ₃	Boron powder was first ball-	NA	High (qualitative	47
		milled for 50 h and then		description)	
		annealed at 1100 °C for 8 h			
		under H ₂ /N ₂ gas			
FAS or SYLGARD	1H,1H,2H,2H-Per-	The mesh was first immersed	NA	96%	48
coated mesh	fuorooctyltriethoxysilane,	into CuCl ₂ solution and then			
	SYLGARD 184 Silicone Elastomer,	was immersed in a FAS			
	toxic and fluorinated	ethanol solvent, finally was			
		dissolved in chloroform			
Polyaniline (PANI)	Aniline, PTES (C14H19F13O3Si),	Complicated vapor phase	NA	97.8%	49
coated cotton fabric	toxic and fluorinated	deposition method			
PLA oil absorption and	PLA	Non-solvent induced phase	1.0 kPa	97%	50
filtration materials		separation and template			
		synthesis method			
PDVB modified mesh	Divinylbenzene, 2,2'-	Solvothermal route	6.027 kPa	99.99%	16
	azoisobutyronitrile, ethyl acetate				
ZnO coated mesh	ZnO nanoparticles, Stearic acid	A spray-coating process	2.45 kPa	98.5%	51
		through tuning the surface			
		composition			

Graphdiyne-based	Pretreated-copper foam, TMEDA,	In situ Glaser-Hay coupling	0.87 kPa	98%	52
superhydrophobic foam	pyridine, and acetone	by using copper foam as			
		both robust 3D porous			
		substrate and catalyst			

Table S1 Comparison of the properties between the PE coated mesh and the reported oil/water separation materials.

Fig. S1 The as-prepared mesh showed special wettability: a) the photograph of a water droplet (2 μ L) on the commercial PE coated mesh with a contact angle of 154.5 \pm 1.2°; b) A diesel oil droplet (2 μ L) spread and permeated quickly on the commercial PE coated mesh; c) the photograph of a water droplet (2 μ L) on the recycled gloves PE coated mesh with a contact angle of 140.4 \pm 1.8°; d) A diesel oil droplet (2 μ L) spread and permeated quickly on the recycled gloves PE coated mesh with a contact angle of 140.4 \pm 1.8°; d) A diesel oil droplet (2 μ L)

Fig. S2 The separation efficiencies of the water phase in the upper glass after separation using the recycled gloves PE coated mesh for four kinds of oil/water mixtures.

Fig. S3 The fluxes of the recycled gloves PE coated mesh, porous and hydrophobic cellulose composite, PSF–SiO₂ nanofibers membrane and carbon–silica nanofibrous membrane.

Fig. S4 SEM images of the mesh after separating four kinds of oil/water mixtures 30 times using the recycled gloves PE coated mesh. a) SEM image of the mesh after separating hexane/water mixtures 30 times. b) SEM image of the mesh after separating toluene/water mixtures 30 times. c) SEM image of the mesh after separating gasoline/water mixtures 30 times. d) SEM image of the mesh after separating diesel/water mixtures 30 times.

Fig. S5 a) Oil/water mixtures separation efficiencies of the recycled gloves PE coated mesh after recycle use; b) Contact angle and SEM image of the mesh after 30 times oil/water separation.

Video:

Video S1: oil/water separation by the recycled gloves PE coated mesh.