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Experimental
Material synthesis:

All reagents were of analytic grade, and double-distilled water was used throughout the
experiments. To prepare the linear structured CoB sample, 0.35 mmol CoCl,*6H,0 and 0.7
mmol NaOH were dissolved into 35 mL deionized water with intense stirring. Then 35 mL of
0.02 mol L-"NaBH, solution was added drop-wise to the above solution with the fixed magnetic
field intensity of ca. 0.4 Tesla under the vessel. The as-prepared CoB was rinsed with double-

distilled water and ethanol alternately, and finally dried in vacuum oven at 40 °C for 8 h.

To prepare CoB@Ni(OH),, 20 mg of the as-prepared CoB was added to 20 mL deionized
water, after which 0.1 mmol NiCl,*6H,0 was dissolved into the suspension. The suspension
was stirred at a rotation rate of 500 rpm for 1 h, wherein the following reactions occur:

Ni?* + Co — Ni + Co?"

2Ni + O, + 2H,0 — 2Ni(OH),



The product was rinsed with double-distilled water and ethanol alternately, and finally dried

in vacuum oven at 40 °C for 8 h.

Characterization

XRD patterns were recorded on a Shimadzu XD-3A (Japan) using filtered Cu-Ka radiation
(A=0.15418 nm) generated at 40 kV and 30 mA. Scans for 26 values were recorded at 4° min!.
Scanning electron microscopy (SEM) images were obtained using a Carl Zeiss Ultra Plus
electron microscope. Transmission electron microscopy (TEM) high angle annular dark field
scanning transmission electron microscopy (STEM) images of the catalysts were obtained using
a JEOL (JEM-2000 FX) microscope operating at 200 kV. Specific surface area was determined
by the Brunauer-Emmett-Teller (BET) method, and the density functional theory DFT method
was employed for analyzing the full range of pore size distribution based on the sorption
isotherms obtained on a Quantachrome Autosorb-1 volumetric analyzer. X-Ray Photoelectron
Spectroscopy (XPS) spectra were generated using Thermo Scientific Escalab 250Xi. Binding
energies were determined by referencing to the C 1 s peak at 285.0 eV. The molar ratios of Co,
B Ni, in the bulk samples were determined by a Varian 720 Inductively Coupled Plasma-Optical

Emission Spectrometer (ICP-OES).

Electrochemical measurements

Cyclic voltammograms (CV) and galvanostatic charge/discharge tests on CoB@Ni(OH),
were carried out in a three-electrode cell. The working electrode comprised 1 cm? of a film
containing CoB@Ni(OH),, carbon black and poly(tetrafluoroethylene) with a mass ratio of
80:10:10, pressed into the Ni foam current collectors. An Hg/HgO (1.0 M KOH) reference
electrode and an activated carbon counter electrode was used in all experiments in 6 mol L™!

KOH electrolyte. CV tests were done on a CHI 650D -electrochemical workstation.



Galvanostatic charge/discharge tests were carried out on a Neware Battery Tester (BTS6.0,

Neware Technology Company, Guangdong, China).

The capacitance of the electrode (C) was calculated according to the following equation

based on CVs or the discharge curves.

0 At
c==2-=
Vo AVm (1

where i is the sampled current, Az is a sampling time span, AV is the total potential deviation of

the voltage window, and m is the mass of the active material examined.
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Fig. S1 XRD patterns of CoB and CoB@Ni(OH),.
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Fig. S2 (a) Overall XPS surveys of CoB and CoB@Ni(OH),; (b) Co 2p; (c) B 1s XPS of CoB
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and CoB@Ni(OH),; (d) Ni 2p; and (e) O 1s XPS of CoB@Ni(OH)s.
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Fig. S3 XRD pattern of CoB@Ni(OH), with 19.79 wt.% and 27.98 wt.% Ni(OH)s.
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Fig. S4 SEM images of CoB@Ni(OH), with the different masses of Ni(OH),; (a): 12.26 wt.%,

(b): 19.79 wt.%, (c): 27.98 wt.%.
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Fig. S5 N, isotherms and the pore size distribution (Inset) of CoB and CoB@Ni(OH),.
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Fig. S6 (a) N, isotherms; (b) corresponding pore size distribution of CoB and CoB@Ni(OH),
with 19.79 wt.% Ni(OH), (black line) and 27.98 wt.% Ni(OH), (red line).

a5t
L
L]
E3of .
Q
= .
o «
15 o "
d [
[ .I
Vs

= CoB
® CoB@Ni(OH),

Z'lohm

12 15

Fig. S7 Comparison of Nyquist plots of the CoB and CoB@Ni(OH), (27.98 wt.%) electrodes
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Fig. S8 Schematic of the CoB@Ni(OH), hybrid, showing CoB core and Ni(OH),.
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Fig. S9 Galvanostatic charge-discharge curves of CoB at different current densities (0.5, 1, 2,
4,and 6 A gh).
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Fig. S10 Charge—discharge curves comparison of the first and last 8 cycles of (a) CoB; and
(b) CoB@Ni(OH),; current density: 2 A g'!; electrolyte: 6 mol L-' KOH.



2£!211n1

Fig. S11 SEM images of CoB@Ni(OH), before (a,b) and after (c,d) 2500 continuous charge-

discharge cycles at a current density of 2 A g-l.
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Fig. S12 Cycling tests of the CoB, CoB@Ni(OH), and CoB@Ni(OH), without carbon
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Table S1. Bulk composition of the as-prepared CoB and a series of CoB@Ni(OH), samples.

Moles of NiCl, Atomic ratio of Mass percentage
Sample ) )

precursor (mmol) Co:B:Ni of Ni(OH),
CoB --- 2.2:1 ---
CoB@Ni(OH), 0.1 10.43:4.74:1 12.26 wt.%
CoB@Ni(OH), 0.14 5.89:2.68:1 19.79 wt.%
CoB@Ni(OH), 0.2 3.74:1.70:1 27.98 wt.%
CoB@Ni(OH), 0.26 3.88:1.85:1 27.28 wt.%

The bulk elemental compositions of CoB and CoB@Ni(OH), samples determined by ICP
are listed in Table S1. The mass percentage of Ni(OH), in CoB@Ni(OH), increased with the
increase of the mole of the NiCl, precursor, and reaches the maxmium value of 27.98 wt.% at
0.2 moles of NiCl,. Further increase of NiCl, reduced the Ni(OH), loading content. As
described above (see Material Synthesis), the formation of Ni(OH), is two-stage, beginning
with formation of metallic Co atoms. With the increase of Ni(OH), loading, the thickness of

the shell covers the available Co atoms thus preventing further reduction of Ni** to Ni metal.



Table S2. Comparison of CoB-core@Ni(OH),—shell with other core-Ni(OH),-shells reported

in the literature .

Sample Specific Areal aCurrent bRetention(%)/cycling
core-£1e11 Ref. capacitance (F  capacitance densit number/°current Electrolyte
g (F cm?) Y density
Chain-like COB@NI(OH) ) - (oo 1293.7 7.76 2Ag! 85%/2500/2 A g 6 M KOH
nanosheets
TiN nanowire arrays i N 1 o 1
@gauze-like Ni(OFH), 2680 6Ag 16%/150/10 A g 2 M KOH
SnO, nanowire arrays
Ni(OH), ultrathin 2] 1553 --- 05A¢g! --- 6 M KOH
g
nanoflakes/Ni foam
Co;04 nanowires B3] 2.5mA 100%/1000/25mA cm-
@Ni(OH), /Ni foam 1330 15.83 om-2 ) 6 M KOH
Fe;0; nanowires @Ni(OH), [ 908 0.97 2L8 A 85.79%/5000/54.6 Ag! 1 M NaOH
nanosheet/Fe foil g
ZnO
nanowires/Ni(OH),/textile 3] 3150 --- 5mV st 98%/5000/20mV s°! 1 M LiOH
fiber
Nis$, nanorod@Ni(OH), (6] 1037 S1Ag!  99.1%/2000/5.9Ag!  3MKOH
nanosheet/graphene
NiCo,S;@Ni(OH), U3A e
nanotube arrays/carbon- g 2700 - ', g 78%/2000/5.9 A g'! 1 M KOH
fabric
. . it -
NiMoO4@Ni(OH), 18] 4953 7.43 2TAE 72041000/16 Ag! 2 MKOH
nanorods/Ni foams
ZnCo,0,@Ni(OH),/Ni o1 2826 2mA - 92042000/10mA em? 3 M KOH
foam cm
NiCo0,04@Ni(OH),/carbon [10] 2475 6.04 5 mA 73.4%/1000/30mA > M KOH
fiber ' cm? cm?

a: the specific capacitance and areal capacitance was obtained at the current density.
b: after cycling test, the retention of the specific capacitance.

c: the cycling test was carried out with the current density.

d: the value was calculated based on the data in the literature.
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