Supporting Information

Highly Efficient Perovskite Solar Cells with Crosslinked PCBM Interlayers

W. Qiu, ^{a, b, †} J. P. Bastos, ^{a, c} S. Dasgupta, ^a T. Merckx, ^a I. Cardinaletti, ^d M. V. C. Jenart, ^e C. B.

Nielsen, ^{e, f} R. Gehlhaar, ^a J. Poortmans, ^{a, c} P. Heremans, ^{a, c, †} I. McCulloch, ^g and D. Cheyns ^a

^a IMEC, Kapeldreef 75, Heverlee, B-3001, Belgium

^b MTM, KU Leuven, Heverlee, Belgium

^c ESAT, KU Leuven, Heverlee, Belgium

^d Hasselt University, IMO-IMOMEC, Diepenbeek, 3590, Belgium

^e Department of Chemistry and Centre for Plastic Electronics, Imperial College London, SW7 2AZ, UK

^f Materials Research Institute and School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK

^g Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 , Saudi Arabia

⁺ Corresponding author: <u>Weiming.Qiu@imec.be</u>; <u>Paul.Heremans@imec.be</u>

Fig. S1 (a) the EQE curves of of the PSCs without ETL, with pristine PCBM and with crosslinked PCBM as ETL; (b) The EQE curves of PSCs with TiO_2 , TiO_2 /crosslinked PCBM, PEIE, PEIE/crosslinked PCBM as ETL.

Fig. S2 The J-V curves from both reverse and forward sweep of perovskite solar cells with different ETLs.

Fig. S3 (a) The *J-V* curves and (b) the steady-state PCEs of PSCs with TiO₂/PCBM and PEIE/PCBM as the ETL, respectively

ETLs	J _{sc} (mA/cm²)	V _{oc} (V)	FF (%)	PCE _{jv} (%)	PCE _{bia} (%)	Irradiance (mW/cm²)
TiO ₂ /PCBM	21.5	0.9 8	73. 2	15.4	13.3	100
PEIE/PCB M	18.9	0.9 7	33. 0	6.0	0.9	100

Table S1. The detailed photovoltaic parameters of the perovskite solar cells using $TiO_2/PCBM$ and PEIE/PCBM as the ETL, respectively, with the data extracted from Fig. S3.

Fig. S4 Top-view SEM images of $CH_3NH_3PbI_3$ films deposited on (a) ITO, (b) TiO_2 , (c) PEIE, (d) crosslinked PCBM, (e) $TiO_2/crosslinked$ PCBM, (f) PEIE/crosslinked PCBM.

Fig. S5 Difference between the tip work function and that of different ETLs on ITO substrates: (a) ITO; (b) Crosslinked PCBM; (c) TiO_2 ; (d) TiO_2 /crosslinked PCBM; (e) PEIE; (f) PEIE/crosslinked PCBM. The work function of the different tips used was not perfectly matching, therefore whenever the tip needed to be changed, we would re-acquire the potential for the last measured layer, as to be able to fix the offsets to the same scale. This explains eventual incongruences between the data in **Fig. 3d** and that in the scan images.

Fig. S6 Top-view SEM images of the $(HC(NH_2)_2)_{0.66}(CH_3NH_3)_{0.34}PbI_{2.85}Br_{0.15}$ film deposited on $TiO_2/crosslinked$ PCBM ETL.

Fig. S7 XRD patterns of the $CH_3NH_3PbI_3$ and $(HC(NH_2)_2)_{0.66}(CH_3NH_3)_{0.34}PbI_{2.85}Br_{0.15}$ films deposited on $TiO_2/crosslinked$ PCBM ETL

Fig. S8 Digital images of our perovskite module taken from (a) the metal electrode side and (b) the ITO side. It has a total aperture area of 4 cm², with 4 sub-cells.

Fig. S9 (a) the J-V curves and (b) the steady-state PCE of the perovskite solar module.