Electronic Supplementary Information

1-Nitro-2-trinitromethyl substituted imidazoles: a new family of high performance energetic materials

Yuangang Xu, Cheng Shen, Qiuhan Lin, Pengcheng Wang,* Chao Jiang and Ming Lu*

School of Chemical Engineering, Nanjing University of Science and Technology

Xiaolingwei 200, Nanjing, Jiangsu, China.

E-mail: *alexwpch@mail.njust.edu.cn; luming@mail.njust.edu.cn*

Table of Contents

1.	Crystal data and structure refinement for 11-15, 17 and 19	S3
2.	Single-crystal X-ray Diffraction Analysis of Compound 11	S5
3.	Single-crystal X-ray Diffraction Analysis of Compound 12a	S6
4.	Single-crystal X-ray Diffraction Analysis of Compound 12b	S7
5.	Single-crystal X-ray Diffraction Analysis of Compound 13	S9
6.	Single-crystal X-ray Diffraction Analysis of Compound 14	S10
7.	Single-crystal X-ray Diffraction Analysis of Compound 15	S11
8.	Single-crystal X-ray Diffraction Analysis of Compound 17	S13
9.	Single-crystal X-ray Diffraction Analysis of Compound 19	S14
10.	¹ H NMR and ¹³ C NMR spectra of compounds 7-9, 11-17, and 19	S16
11.	DSC plots of 7-9 , and 14-16	S28
12.	TGA plots of 11-13 , 17 , and 19	S31
13.	IR spectra of 7-9, 11-17, and 19	S34
14.	Computational details	S40
	References	S43

1. Crystal data and structure refinement for 11-15, 17 and 19

	11	12a	12b	13
CCDC	1500624	1502271	1502272	1500626
Chemical formula	C5H6N6O8	C8H10N6O8	C8H10N6O8	C5H6N6O8
Formula weight / g mol ⁻¹	278.16	318.22	318.22	278.16
Temperature / K	293(2)	293(2)	293(2)	293(2)
Wavelength / Å	0.71073	0.71073	0.71073	0.71073
Crystal system	Triclinic	Monoclinic	Monoclinic	Monoclinic
Space group	<i>P</i> 1	C2/c	$P2_{1}/c$	$P2_{1}$
Crystal colour	colorless	colorless	colorless	colorless
<i>a</i> / Å	8.4150(17)	21.390(4)	11.267(2)	10.821(2)
<i>b</i> / Å	10.916(2)	12.501(3)	10.248(2)	8.8200(18)
<i>c</i> / Å	12.774(3)	9.957(2)	11.444(2)	11.286(2)
α / °	72.30(3)	90.00	90.00	90.00
eta / °	83.98(3)	95.08(3)	91.41(3)	93.44(3)
γ / °	83.60(3)	90.00	90.00	90.00
Volume / Å ³	1107.8(4)	2652.0(9)	1321.0(5)	1075.2(4)
Ζ	4	8	4	4
$D_{\rm calc}$ / g cm ⁻³	1.668	1.594	1.600	1.718
Absorption coefficient / mm ⁻¹	0.158	0.144	0.144	0.163
<i>F</i> (000)	568	1312	656	568
heta range / °	1.68-25.39	1.89-25.37	1.81-25.39	1.81-25.36
Index ranges	$0 \le h \le 10, -13 \le k \\ \le 13, -15 \le l \le 15$	$0 \le h \le 25, 0 \le k$ $\le 15, -12 \le l \le 11$	$\begin{array}{l} 0 \leq h \leq 13, 0 \leq k \\ \leq 12, \text{-}13 \leq l \leq 13 \end{array}$	$0 \le h \le 13, 0 \le k$ $\le 10, -13 \le l \le 13$
Reflections collected	4072	2424	2432	2108
Goodness-of-fit on F^2	1.004	1.018	1.002	1.001
<i>R</i> indices (all data)	$R_1 = 0.1339, WR_2$ = 0.1810	$R_1 = 0.0921,$ w $R_2 = 0.1711$	$R_1=0.1462,$ w $R_2=0.1569$	$R_1 = 0.1087, wR_2$ = 0.0981
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0667, wR_2$ = 0.1520	$R_1 = 0.0556,$ w $R_2 = 0.1492$	$R_1 = 0.0692,$ w $R_2 = 0.1322$	$R_1 = 0.0525, wR_2$ = 0.0828
Largest diff. peak and hole / e Å ⁻³	0.339, -0.203	0.329, -0.270	0.202, -0.203	0.217, -0.167

Table S1. Crystal data and structure refinement for **11-13**.

	14	15	17	19
CCDC	1502273	1500614	1500623	1500625
Chemical formula	C4H6N4O6	C6H8N4O6	C6H6N6O10	C8H8N6O12
Formula weight / g mol ⁻¹	206.13	232.16	322.17	380.20
Temperature / K	293(2)	293(2)	298(2)	293(2)
Wavelength / Å	0.71073	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/n$	<i>P</i> 1
Crystal colour	light yellow	colorless	colorless	colorless
<i>a</i> / Å	11.531(2)	10.125(2)	20.437(4)	8.6990(17)
<i>b</i> / Å	7.5300(15)	8.3450(17)	6.2410(12)	8.7890(18)
<i>c</i> / Å	17.166(3)	10.583(2)	20.588(4)	10.723(2)
α / °	90.00	90.00	90.00	86.59(3)
eta / °	98.46(3)	106.10(3)	113.82(3)	89.54(3)
γ / °	90.00	90.00	90.00	72.16(3)
Volume / Å ³	1474.3(5)	859.1(3)	2402.3(8)	779.0(3)
Ζ	8	4	8	2
$D_{ m calc}$ / g cm ⁻³	1.857	1.795	1.782	1.621
Absorption coefficient / mm ⁻¹	0.175	0.162	0.172	0.155
<i>F</i> (000)	848	480	1312	388
heta range / °	1.79-25.36	2.09-25.38	1.18-25.46	1.90-25.39
Index ranges	$\begin{array}{l} 0 \leq h \leq 13, 0 \leq k \\ \leq 9, \text{-}20 \leq l \leq 20 \end{array}$	$0 \le h \le 12, 0 \le k$ $\le 10, -12 \le l \le 12$	$0 \le h \le 24, 0 \le k$ $\le 7, -24 \le l \le 22$	$0 \le h \le 10, -10 \le k \\ \le 10, -12 \le l \le 12$
Reflections collected	2702	1577	4399	2867
Goodness-of-fit on F^2	1.041	1.000	1.000	1.003
<i>R</i> indices (all data)	$R_1 = 0.0758$, w $R_2 = 0.1644$	$R_1 = 0.0708, wR_2$ = 0.1433	$R_1 = 0.1810, wR_2$ = 0.1715	$R_1 = 0.1022, wR_2 = 0.1889$
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0570,$ w $R_2 = 0.1528$	$R_1 = 0.0492, wR_2$ = 0.1269	$R_1 = 0.0785, wR_2$ = 0.1403	$R_1 = 0.0635, wR_2 = 0.1597$
Largest diff. peak and hole / e Å ⁻³	0.378, -0.398	0.256, -0.351	0.264, -0.248	0.258, -0.307

Table S2. Crystal data and structure refinement for 14, 15, 17, and 19.

				_
O(1) - N(3)	1.209(4)	N(2) - N(3)	1.339(4)	
O(2) - N(3)	1.225(4)	N(2) - C(3)	1.408(4)	
O(3) - N(4)	1.191(4)	N(2) - C(2)	1.463(5)	
O(4) - N(4)	1.191(4)	N(4) - C(5)	1.534(5)	
O(5) - N(5)	1.195(4)	N(5) - C(5)	1.535(5)	
O(6) - N(5)	1.205(5)	N(6) - C(5)	1.517(5)	
O(7) - N(6)	1.195(4)	C(1) - C(4)	1.499(6)	
O(8) – N(6	1.181(4)	C(1) - C(2)	1.527(5)	
N(1) - C(3)	1.242(4)	C(3) - C(5)	1.501(5)	
N(1) - C(1)	1.490(4)			
C(3) - N(1) - C(1)	108.3(3)	O(7) - N(6) - C(5)	116.9(4)	
N(3) - N(2) - C(3)	127.6(3)	N(1) - C(1) - C(4)	108.7(3)	
N(3) - N(2) - C(2)	123.4(3)	N(1) - C(1) - C(2)	106.1(3)	
C(3) - N(2) - C(2)	108.3(3)	C(4) - C(1) - C(2)	113.5(4)	
O(1) - N(3) - O(2)	125.1(4)	N(2) - C(2) - C(1)	101.4(3)	
O(1) - N(3) - N(2)	117.5(3)	N(1) - C(3) - N(2)	115.2(3)	
O(2) - N(3) - N(2)	117.3(3)	N(1) - C(3) - C(5)	120.9(3)	
O(4) - N(4) - O(3)	127.2(4)	N(2) - C(3) - C(5)	123.9(3)	
O(4) - N(4) - C(5)	114.9(4)	C(3) - C(5) - N(6)	112.6(3)	
O(3) - N(4) - C(5)	117.8(4)	C(3) - C(5) - N(4)	111.6(3)	
O(5) - N(5) - O(6)	127.1(4)	N(6) - C(5) - N(4)	114.2(3)	
O(5) - N(5) - C(5)	117.4(4)	C(3) - C(5) - N(5)	107.7(3)	
O(6) - N(5) - C(5)	115.4(4)	N(6) - C(5) - N(5)	105.1(3)	
O(8) - N(6) - O(7)	126.8(4)	N(4) - C(5) - N(5)	104.9(3)	
O(8) - N(6) - C(5)	116.1(4)			
Fable S4. Selected torsio	on angles for 11 [°]		

2. Single-crystal X-ray Diffraction Analysis of Compound 11 Table S3. Selected bond lengths [Å] and angles [°] for compound 11

C(2) - N(2) - N(3) - O(1)	1.9(5)	C(2) - N(2) - C(3) - C(5)	178.5(3)
C(2) - N(2) - N(3) - O(2)	-179.6(3)	N(1) - C(3) - C(5) - N(5)	2.3(5)
N(3) - N(2) - C(2) - C(1)	177.7(3)	N(2) - C(3) - C(5) - N(5)	-179.4(3)
C(1) - N(1) - C(3) - N(2)	-2.7(4)	O(7) - N(6) - C(5) - C(3)	-178.1(4)
C(2) - N(2) - C(3) - N(1)	-3.1(4)		

O(1) - N(3)	1.228(4)	N(4) – O(4)	1.191(4)
C(1) - N(1)	1.473(4)	N(4) - C(8)	1.522(4)
C(1) - C(6)	1.476(5)	C(4) - C(5)	1.516(5)
C(1) - C(2)	1.493(5)	N(5) – O(6)	1.194(3)
N(2) – C(7)	1.259(4)	N(5) - O(5)	1.211(4)
N(2) – C(6)	1.487(4)	N(5) - C(8)	1.528(4)
N(1) - N(3)	1.370(4)	C(5) - C(6)	1.469(5)
N(1) - C(7)	1.416(4)	N(6) – O(8)	1.198(4)
O(2) - N(3)	1.199(3)	N(6) – O(7)	1.202(3)
C(2) - C(3)	1.513(5)	N(6) - C(8)	1.541(4)
O(3) – N(4)	1.178(4)	C(7) - C(8)	1.497(4)
C(3) - C(4)	1.504(6)		
N(1) - C(1) - C(6)	100.2(2)	O(5) - N(5) - C(8)	113.3(3)
N(1) - C(1) - C(2)	125.2(3)	C(6) - C(5) - C(4)	109.4(3)
C(6) - C(1) - C(2)	113.2(3)	O(8) - N(6) - O(7)	128.0(3)
C(7) - N(2) - C(6)	105.6(2)	O(8) - N(6) - C(8)	116.1(3)
N(3) - N(1) - C(7)	123.7(3)	O(7) - N(6) - C(8)	116.0(3)
N(3) - N(1) - C(1)	124.0(2)	C(5) - C(6) - C(1)	114.6(3)
C(7) - N(1) - C(1)	104.9(2)	C(5) - C(6) - N(2)	120.8(3)
C(1) - C(2) - C(3)	106.8(3)	C(1) - C(6) - N(2)	106.4(3)
O(2) - N(3) - O(1)	125.8(3)	N(2) - C(7) - N(1)	115.0(3)
O(2) - N(3) - N(1)	116.5(3)	N(2) - C(7) - C(8)	119.6(3)
O(1) - N(3) - N(1)	117.7(3)	N(1) - C(7) - C(8)	125.3(3)
C(4) - C(3) - C(2)	116.7(3)	C(7) - C(8) - N(4)	112.5(2)
O(3) - N(4) - O(4)	126.6(3)	C(7) - C(8) - N(5)	112.5(2)
O(3) - N(4) - C(8)	114.0(3)	N(4) - C(8) - N(5)	112.7(3)
O(4) - N(4) - C(8)	119.2(3)	C(7) - C(8) - N(6)	108.4(2)
C(3) - C(4) - C(5)	114.6(3)	N(4) - C(8) - N(6)	104.4(2)
O(6) - N(5) - O(5)	127.4(3)	N(5) - C(8) - N(6)	105.8(2)
O(6) - N(5) - C(8)	119.2(3)		

3. Single-crystal X-ray Diffraction Analysis of Compound 12a

Table S5. Selected bond lengths [Å] and angles [°] for compound **12a**

C(6) - C(1) - N(1) - N(3)	176.5(3)	O(3) - N(4) - C(8) - C(7)	-9.1(4)
N(1) - C(1) - C(2) - C(3)	-177.4(3)	O(4) - N(4) - C(8) - C(7)	175.9(3)
C(6) - N(2) - C(7) - C(8)	174.9(3)	C(4) - C(5) - C(6) - N(2)	178.6(4)
N(2) - C(7) - C(8) - N(6)	-3.3(4)	C(6) - N(2) - C(7) - N(1)	-1.7(4)
N(1) - C(7) - C(8) - N(6)	172.9(3)		

Table S6. Selected torsion angles for **12a** [°]

Fig. S1 Ball-and-stick packing diagram of **12a** viewed down the c axis

4.	Single-cryst	al X-ray I	Diffraction	Analysis	of Compound	12b
----	--------------	------------	-------------	----------	-------------	-----

0	_
Table S7. Selected bond lengths [Å] ar	nd angles [°] for compound 12b

N(1) – C(7)	1.256(4)	O(4) - N(4)	1.199(4)
N(1) - C(1)	1.500(5)	N(4) - C(8)	1.531(5)
O(1) - N(3)	1.241(4)	C(4) - C(5)	1.517(5)
C(1) - C(2)	1.518(5)	C(5) - C(6)	1.532(5)
C(1) - C(6)	1.537(5)	O(5) - N(5)	1.214(4)
N(2) - N(3)	1.370(4)	N(5) – O(6)	1.199(4)
N(2) - C(7)	1.424(5)	N(5) – C(8)	1.540(5)
N(2) - C(6)	1.500(4)	N(6) – O(8)	1.193(4)
O(2) - N(3)	1.191(4)	N(6) – O(7)	1.214(5)
C(2) - C(3)	1.500(6)	N(6) – C(8)	1.536(5)
O(3) - N(4)	1.202(4)	C(7) - C(8)	1.504(5)
C(3) - C(4)	1.506(6)		

C(7) - N(1) - C(1)	106.7(3)	O(6) - N(5) - C(8)	115.9(3)
N(1) - C(1) - C(2)	114.5(3)	O(5) - N(5) - C(8)	116.8(3)
N(1) - C(1) - C(6)	104.7(3)	O(8) - N(6) - O(7)	128.1(4)
C(2) - C(1) - C(6)	114.0(3)	O(8) - N(6) - C(8)	115.9(4)
N(3) - N(2) - C(7)	125.3(3)	O(7) - N(6) - C(8)	116.0(4)
N(3) - N(2) - C(6)	122.5(3)	N(2) - C(6) - C(5)	110.3(3)
C(7) - N(2) - C(6)	105.6(3)	N(2) - C(6) - C(1)	97.5(3)
C(3) - C(2) - C(1)	114.1(3)	C(5) - C(6) - C(1)	114.7(4)
O(2) - N(3) - O(1)	126.6(4)	N(1) - C(7) - N(2)	114.5(3)
O(2) - N(3) - N(2)	117.1(3)	N(1) - C(7) - C(8)	120.1(4)
O(1) - N(3) - N(2)	116.2(4)	N(2) - C(7) - C(8)	125.4(3)
C(2) - C(3) - C(4)	111.0(4)	C(7) - C(8) - N(4)	112.8(3)
O(4) - N(4) - O(3)	127.5(4)	C(7) - C(8) - N(6)	107.5(3)
O(4) - N(4) - C(8)	117.2(4)	N(4) - C(8) - N(6)	105.1(3)
O(3) - N(4) - C(8)	115.1(3)	C(7) - C(8) - N(5)	112.2(3)
C(3) - C(4) - C(5)	110.9(3)	N(4) - C(8) - N(5)	113.2(3)
C(4) - C(5) - C(6)	110.4(3)	N(6) - C(8) - N(5)	105.3(3)
O(6) - N(5) - O(5)	127.2(4)		

Table S8. Selected torsion angles for $\boldsymbol{12b}~[^{o}~]$

N(3) - N(2) - C(6) - C(1)	177.6(3)	N(2) - C(7) - C(8) - N(6)	179.7(4)
C(1) - N(1) - C(7) - N(2)	3.1(5)	O(4) - N(4) - C(8) - C(7)	176.9(4)
C(1) - N(1) - C(7) - C(8)	-174.8(3)	O(3) - N(4) - C(8) - C(7)	-7.2(5)
N(1) - C(7) - C(8) - N(6)	-2.6(5)	O(5) - N(5) - C(8) - C(7)	-173.9(4)

Fig. S2 Ball-and-stick packing diagram of $\mathbf{12b}$ viewed down the b axis

Table S9. Selected bond lengths $[Å]$ and angles $[\circ]$ for compound 13				
N(1) – C(4)	1.254(7)	N(4) – O(4)	1.075(16)	
N(1) - C(1)	1.455(8)	N(4) - C(5)	1.576(11)	
O(1) - N(3)	1.231(8)	N(5) – O(6)	1.162(6)	
C(1) - C(2)	1.380(9)	N(5) - O(5)	1.167(7)	
N(2) - C(4)	1.353(7)	N(5) - C(5)	1.457(8)	
N(2) - N(3)	1.355(7)	C(5) - N(6)	1.521(8)	
N(2) - C(3)	1.492(7)	C(6) - C(7)	1.450(8)	
O(2) - N(3)	1.182(6)	C(6) - N(7)	1.473(7)	
C(2) - C(3)	1.449(9)	N(6) – O(8)	1.163(7)	
O(3) - N(4)	1.262(13)	N(6) - O(7)	1.194(7)	
C(4) - C(5)	1.531(8)			
C(4) - N(1) - C(1)	118.9(6)	O(4) - N(4) - C(5)	113.9(14)	
C(2) - C(1) - N(1)	113.3(7)	O(3) - N(4) - C(5)	109.5(11)	
C(4) - N(2) - N(3)	125.0(5)	O(6) - N(5) - O(5)	122.7(8)	
C(4) - N(2) - C(3)	120.0(5)	O(6) - N(5) - C(5)	124.8(7)	
N(3) - N(2) - C(3)	114.8(5)	O(5) - N(5) - C(5)	112.3(6)	
C(1) - C(2) - C(3)	117.3(8)	N(5) - C(5) - N(6)	108.1(5)	
O(4) - N(4) - O(3)	136.7(15)	N(5) - C(5) - C(4)	118.4(5)	
C(2) - C(3) - N(2)	109.6(5)	N(6) - C(5) - C(4)	111.4(5)	
O(2) - N(3) - O(1)	124.4(7)	N(5) - C(5) - N(4)	106.0(7)	
O(2) - N(3) - N(2)	119.6(7)	N(6) - C(5) - N(4)	102.5(7)	
O(1) - N(3) - N(2)	115.5(6)	C(4) - C(5) - N(4)	109.1(5)	
N(1) - C(4) - N(2)	124.8(6)	O(8) - N(6) - O(7)	120.5(8)	
N(1) - C(4) - C(5)	112.1(5)	O(8) - N(6) - C(5)	123.6(7)	
N(2) - C(4) - C(5)	123.0(5)	O(7) - N(6) - C(5)	115.9(6)	

5. Single-crystal X-ray Diffraction Analysis of Compound 13

C(4) - N(2) - N(3) - O(2)	-177.9(6)	C(1) - N(1) - C(4) - C(5)	-179.7(8)
C(3) - N(2) - N(3) - O(2)	-3.6(10)	N(1) - C(4) - C(5) - N(4)	2.4(10)
C(3) - N(2) - N(3) - O(1)	-175.3(8)	N(2) - C(4) - C(5) - N(4)	-175.3(7)
C(1) - N(1) - C(4) - N(2)	-2.1(12)	C(3) - N(2) - C(4) - N(1)	-5.2(10)

O(1) - C(1)	1.403(4)	O(2) – H(2B)	0.9800	
N(1) - C(3)	1.338(4)	N(3) – O(3)	1.151(4)	
N(1) - C(1)	1.456(4)	N(3) – O(4)	1.219(3)	
C(1) - C(2)	1.518(4)	N(3) - C(4)	1.410(4)	
O(1) - H(1A)	0.8200	C(3) - C(4)	1.428(4)	
N(2) - C(3)	1.319(4)	N(4) - O(6)	1.219(3)	
N(2) - C(2)	1.457(4)	N(4) - O(5)	1.248(3)	
O(2) - C(2)	1.400(4)	N(4) - C(4)	1.403(4)	
C(1) $O(1)$ $H(1A)$	100.5	C(2) $O(2)$ $U(2D)$	100.5	
$C(1) = O(1) = \Pi(1A)$	109.5	$C(2) = O(2) = \Pi(2B)$	109.5	
C(3) - N(1) - C(1)	110.0(2)	O(4) - N(3) - C(4)	118.9(2)	
O(1) - C(1) - N(1)	110.6(3)	N(2) - C(3) - N(1)	109.5(3)	
O(1) - C(1) - C(2)	108.3(2)	N(2) - C(3) - C(4)	125.7(3)	
N(1) - C(1) - C(2)	101.8(2)	N(1) - C(3) - C(4)	124.8(3)	
C(3) - N(2) - C(2)	111.6(2)	O(6) - N(4) - O(5)	120.1(2)	
O(2) - C(2) - N(2)	110.0(2)	O(6) - N(4) - C(4)	122.5(3)	
O(2) - C(2) - C(1)	112.0(3)	O(5) - N(4) - C(4)	117.4(2)	
N(2) - C(2) - C(1)	101.9(2)	N(4) - C(4) - N(3)	117.7(2)	
O(3) - N(3) - O(4)	119.5(3)	N(4) - C(4) - C(3)	121.6(2)	
O(3) - N(3) - C(4)	121.4(3)	N(3) - C(4) - C(3)	120.7(2)	

6. Single-crystal X-ray Diffraction Analysis of Compound 14

Table S11. Selected bond lengths [Å] and angles [°] for compound 14

Table S12. Selected torsion angles for $14\ [^{\rm o}\]$

C(2) = N(2) = C(3) = N(1)	6 1(4)	N(2) - C(3) - C(4) - N(4)	-0.2(5)
C(2) = N(2) = C(3) = N(1)	174.9(2)	N(1) = C(2) = C(4) = N(4)	179.7(2)
C(2) = N(2) = C(3) = C(4)	-1/4.8(3)	N(1) - C(3) - C(4) - N(4)	1/8./(3)
O(4) - N(3) - C(4) - N(4)	-177.7(3)	N(2) - C(3) - C(4) - N(3)	-179.5(3)
O(4) - N(3) - C(4) - C(3)	1.6(5)	N(1) - C(3) - C(4) - N(3)	-0.6(5)

Fig. S3 (a) Ball-and-stick packing diagram of 14 viewed down the b axis; (b) Ball-andstick packing diagram of 14 viewed down the a axis

7	Single-cry	vstal X-rav	Diffraction A	nalysis of	Compound 15
<i>'</i> •		y Dial I L Tay		1101 y 515 01	Compound 10

ible 515. Selected bol	id lengths [A] and a	ngles [] for compound 1:	5
O(1) – C(2)	1.383(3)	N(2) – H(2A)	0.8600
O(1) - C(1)	1.434(3)	C(2) - C(3)	1.527(4)
N(1) - C(5)	1.317(3)	N(3) - O(3)	1.223(3)
N(1) - C(2)	1.475(3)	N(3) - O(4)	1.243(3)
N(1) - H(1A)	0.8600	N(3) - C(6)	1.423(3)
C(1) - C(4)	1.499(4)	N(4) - O(5)	1.226(3)
O(2) - C(3)	1.424(4)	N(4) – O(6)	1.246(3)
O(2) - C(4)	1.432(3)	N(4) - C(6)	1.405(3)
N(2) - C(5)	1.350(3)	C(5) - C(6)	1.425(4)
N(2) - C(3)	1.433(3)		

Table S13. Selected bond lengths [Å] and angles [°] for compound 15

113.9(2)	O(4) - N(3) - C(6)	117.7(2)
110.1(2)	O(2) - C(3) - N(2)	107.4(2)
124.9	O(2) - C(3) - C(2)	112.5(2)
124.9	N(2) - C(3) - C(2)	100.5(2)
110.2(2)	O(5) - N(4) - O(6)	121.3(2)
112.3(2)	O(5) - N(4) - C(6)	121.3(2)
110.0(2)	O(6) - N(4) - C(6)	117.3(2)
125.0	O(2) - C(4) - C(1)	109.1(2)
125.0	N(1) - C(5) - N(2)	109.2(2)
114.8(2)	N(1) - C(5) - C(6)	126.7(2)
116.0(2)	N(2) - C(5) - C(6)	124.2(2)
99.9(2)	N(4) - C(6) - N(3)	117.6(2)
122.5(2)	N(4) - C(6) - C(5)	121.7(2)
119.8(2)	N(3) - C(6) - C(5)	120.6(2)
	113.9(2) $110.1(2)$ 124.9 124.9 $110.2(2)$ $112.3(2)$ $110.0(2)$ 125.0 $114.8(2)$ $116.0(2)$ $99.9(2)$ $122.5(2)$ $119.8(2)$	113.9(2) $O(4) - N(3) - C(6)$ $110.1(2)$ $O(2) - C(3) - N(2)$ 124.9 $O(2) - C(3) - C(2)$ 124.9 $N(2) - C(3) - C(2)$ $110.2(2)$ $O(5) - N(4) - O(6)$ $112.3(2)$ $O(5) - N(4) - C(6)$ $110.0(2)$ $O(6) - N(4) - C(6)$ 125.0 $O(2) - C(4) - C(1)$ 125.0 $N(1) - C(5) - N(2)$ $114.8(2)$ $N(1) - C(5) - C(6)$ $116.0(2)$ $N(2) - C(5) - C(6)$ $99.9(2)$ $N(4) - C(6) - N(3)$ $122.5(2)$ $N(4) - C(6) - C(5)$ $119.8(2)$ $N(3) - C(6) - C(5)$

Table S14. Selected torsion angles for ${\bf 15}~[^{\rm o}~]$

N(1) - C(5) - C(6) - N(4)	-8.5(4)	C(2) - N(1) - C(5) - C(6)	172.3(2)
N(2) - C(5) - C(6) - N(4)	171.7(3)	C(2) - N(1) - C(5) - N(2)	-7.9(3)
N(1) - C(5) - C(6) - N(3)	174.8(2)	O(6) - N(4) - C(6) - N(3)	-175.1(2)
N(2) - C(5) - C(6) - N(3)	-5.0(4)	O(6)v N(4) - C(6) - C(5)	8.1(4)

Fig. S4 Ball-and-stick packing diagram of 15 viewed down the b axis

C(1) - N(3)	1.503(6)	O(9) - C(3)	1.414(6)
C(1) - C(2)	1.506(6)	O(9) - C(4)	1.417(6)
C(1) - N(2)	1.559(6)	O(10) – C(6)	1.348(6)
C(1) - N(1)	1.559(7)	O(10) - C(5)	1.413(6)
O(1) - N(1)	1.138(6)	N(4) - N(5)	1.377(6)
O(2) - N(1)	1.225(6)	N(5) - C(2)	1.367(6)
O(3) - N(2)	1.178(5)	N(5) - C(6)	1.508(6)
O(4) - N(2)	1.180(5)	N(6) - C(2)	1.264(6)
O(5) - N(3)	1.251(5)	N(6) - C(3)	1.501(6)
O(6) - N(3)	1.193(5)	C(3) - C(6)	1.538(8)
O(7) - N(4)	1.230(5)	C(4) - C(5)	1.512(8)
O(8) - N(4)	1.232(5)		
N(3) - C(1) - C(2)	112.2(4)	O(7) - N(4) - N(5)	117.4(5)
N(3) - C(1) - N(2)	113.5(4)	O(8) - N(4) - N(5)	116.0(5)
C(2) - C(1) - N(2)	110.3(4)	C(2) - N(5) - N(4)	127.7(4)
N(3) - C(1) - N(1)	105.0(4)	C(2) - N(5) - C(6)	110.0(4)
C(2) - C(1) - N(1)	110.1(4)	N(4) - N(5) - C(6)	121.3(4)
N(2) - C(1) - N(1)	105.3(4)	C(2) - N(6) - C(3)	105.9(4)
C(3) - O(9) - C(4)	116.1(5)	N(6) - C(2) - N(5)	115.7(4)
C(6) - O(10) - C(5)	112.1(4)	N(6) - C(2) - C(1)	118.8(5)
O(1) - N(1) - O(2)	131.7(7)	N(5) - C(2) - C(1)	125.5(4)
O(1) - N(1) - C(1)	116.5(6)	O(9) - C(3) - N(6)	110.6(4)
O(2) - N(1) - C(1)	111.8(6)	O(9) - C(3) - C(6)	112.7(4)
O(3) - N(2) - O(4)	128.7(5)	N(6) - C(3) - C(6)	108.0(4)
O(3) - N(2) - C(1)	117.2(5)	O(10) - C(5) - C(4)	109.7(5)
O(4) - N(2) - C(1)	113.7(4)	O(10) - C(6) - N(5)	113.5(4)
O(6) - N(3) - O(5)	126.1(5)	O(10) - C(6) - C(3)	116.3(5)
O(6) - N(3) - C(1)	118.3(4)	N(5) - C(6) - C(3)	96.9(4)
O(5) - N(3) - C(1)	115.5(5)	O(7) - N(4) - O(8)	126.6(6)

8. Single-crystal X-ray Diffraction Analysis of Compound 17

Table S15. Selected bond lengths [Å] and angles [°] for compound 17

C(2) - C(1) - N(3) - O(6)	-6.6(6)	N(4) - N(5) - C(2) - C(1)	-0.1(8)
C(2) - C(1) - N(3) - O(5)	174.6(4)	N(1) - C(1) - C(2) - N(6)	-2.6(6)
O(7) - N(4) - N(5) - C(2)	178.6(5)	N(1) - C(1) - C(2) - N(5)	178.6(5)
O(8) - N(4) - N(5) - C(2)	-4.4(7)	N(4) - N(5) - C(6) - C(3)	-173.5(4)
O(8) - N(4) - N(5) - C(6)	-172.4(5)	C(3) - N(6) - C(2) - C(1)	178.3(4)
C(3) - N(6) - C(2) - N(5)	-2.8(6)	N(4) - N(5) - C(2) - N(6)	-179.0(4)

Table S16. Selected torsion angles for 17 $[^{\circ}]$

9. Single-crystal X-ray Diffraction Analysis of Compound 19

19
l

1.374(4)	N(3) – O(5)	1.218(4)
1.417(4)	N(4) – O(8)	1.195(4)
1.370(4)	N(4) – O(7)	1.198(4)
1.396(4)	N(4) - C(8)	1.515(4)
1.447(4)	C(4) - C(5)	1.469(6)
1.467(4)	O(4) – C(6)	1.177(5)
1.535(5)	N(5) – O(10)	1.191(4)
1.254(4)	N(5) – O(9)	1.199(4)
1.411(4)	N(5) - C(8)	1.541(5)
1.186(5)	N(6) - O(11)	1.202(4)
1.363(4)	N(6) – O(12)	1.208(4)
1.506(4)	N(6) – C(8)	1.528(4)
1.206(4)	C(6) - C(7)	1.475(6)
116.1(3)	O(2) - C(4) - O(1)	121.3(4)
127.5(3)	O(2) - C(4) - C(5)	128.6(4)
123.1(3)	O(1) - C(4) - C(5)	110.1(4)
109.0(3)	O(10) - N(5) - O(9)	128.3(4)
106.9(3)	O(10) - N(5) - C(8)	116.8(3)
108.3(3)	O(9) - N(5) - C(8)	114.9(3)
107.0(3)	O(11) - N(6) - O(12)	128.0(3)
107.2(3)	O(11) - N(6) - C(8)	119.0(3)
108.5(3)	O(12) - N(6) - C(8)	113.0(3)
109.8(3)	O(4) - C(6) - O(3)	121.7(4)
	$\begin{array}{c} 1.374(4)\\ 1.417(4)\\ 1.370(4)\\ 1.396(4)\\ 1.396(4)\\ 1.447(4)\\ 1.467(4)\\ 1.535(5)\\ 1.254(4)\\ 1.411(4)\\ 1.186(5)\\ 1.363(4)\\ 1.506(4)\\ 1.206(4)\\ 1.206(4)\\ 116.1(3)\\ 127.5(3)\\ 123.1(3)\\ 109.0(3)\\ 106.9(3)\\ 108.3(3)\\ 107.0(3)\\ 107.2(3)\\ 108.5(3)\\ 109.8(3)\\ \end{array}$	1.374(4) $N(3) - O(5)$ $1.417(4)$ $N(4) - O(8)$ $1.370(4)$ $N(4) - O(7)$ $1.396(4)$ $N(4) - C(8)$ $1.447(4)$ $C(4) - C(5)$ $1.447(4)$ $O(4) - C(6)$ $1.535(5)$ $N(5) - O(10)$ $1.254(4)$ $N(5) - O(9)$ $1.411(4)$ $N(5) - C(8)$ $1.186(5)$ $N(6) - O(11)$ $1.363(4)$ $N(6) - O(12)$ $1.506(4)$ $N(6) - C(8)$ $1.206(4)$ $C(6) - C(7)$ $116.1(3)$ $O(2) - C(4) - O(1)$ $127.5(3)$ $O(2) - C(4) - O(1)$ $127.5(3)$ $O(1) - N(5) - O(9)$ $106.9(3)$ $O(10) - N(5) - C(8)$ $109.0(3)$ $O(10) - N(5) - C(8)$ $108.3(3)$ $O(9) - N(5) - C(8)$ $107.0(3)$ $O(11) - N(6) - O(12)$ $107.2(3)$ $O(11) - N(6) - C(8)$ $109.8(3)$ $O(4) - C(6) - O(3)$

N(1) - C(2) - C(1)	100.2(2)	O(4) - C(6) - C(7)	128.0(4)
C(6) - O(3) - C(2)	118.1(3)	O(3) - C(6) - C(7)	110.3(3)
N(2) - C(3) - N(1)	115.1(3)	C(3) - C(8) - N(4)	114.4(3)
N(2) - C(3) - C(8)	120.0(3)	C(3) - C(8) - N(6)	111.5(3)
N(1) - C(3) - C(8)	124.9(3)	N(4) - C(8) - N(6)	111.9(3)
O(6) - N(3) - O(5)	127.8(3)	C(3) - C(8) - N(5)	107.3(2)
O(6) - N(3) - N(1)	115.6(3)	N(4) - C(8) - N(5)	105.2(3)
O(5) - N(3) - N(1)	116.6(3)	N(6) - C(8) - N(5)	105.8(3)
O(8) - N(4) - O(7)	127.3(4)	O(7) - N(4) - C(8)	115.7(3)
O(8) - N(4) - C(8)	116.9(3)		

Table S18. Selected torsion angles for 19 [°]

C(3) - N(1) - C(2) - C(1)	-9.3(3)	C(2) - N(1) - N(3) - O(5)	-173.9(3)
C(1) - N(2) - C(3) - N(1)	4.3(4)	C(1) - O(1) - C(4) - O(2)	6.2(5)
C(1) - N(2) - C(3) - C(8)	-175.1(3)	C(1) - O(1) - C(4) - C(5)	-174.0(3)
C(2) - N(1) - C(3) - N(2)	3.8(4)	C(2) - O(3) - C(6) - O(4)	0.3(6)
C(2) - N(1) - C(3) - C(8)	-176.8(3)	C(2) - O(3) - C(6) - C(7)	-179.2(3)
C(3) - N(1) - N(3) - O(6)	178.2(3)	N(2) - C(3) - C(8) - N(5)	-2.3(4)
C(2) - N(1) - N(3) - O(6)	6.2(5)	N(1) - C(3) - C(8) - N(5)	178.4(3)
C(3) - N(1) - N(3) - O(5)	-1.9(5)	O(7) - N(4) - C(8) - C(3)	-5.1(5)

10. ¹H NMR and ¹³C NMR spectra of compounds 7-9, 11-17, and 19.

Fig. S6 ¹³C-NMR spectrum of 7 in d₆-DMSO

Fig. S8¹³C-NMR spectrum of **8** in d₆-DMSO

Fig. S10 ¹³C-NMR spectrum of **9** in d₆-DMSO

Fig. S11 ¹H-NMR spectrum of **11** in d₆-DMSO

Fig. S12 ¹³C-NMR spectrum of **11** in d₆-DMSO

Fig. S13 ¹H-NMR spectrum of **12a** (trans-form) in d₆-DMSO

Fig. S14 ¹³C-NMR spectrum of **12a** (trans-form) in d₆-DMSO

Fig. S16¹³C-NMR spectrum of **12b** (cis-form) in d₆-DMSO

Fig. S18 ¹³C-NMR spectrum of **13** in d₆-DMSO

Fig. S20 ¹³C-NMR spectrum of **14** in d₆-DMSO

Fig. S22 ¹³C-NMR spectrum of **15** in d₆-DMSO

Fig. S24 ¹³C-NMR spectrum of **16** in d₆-DMSO

Fig. S26¹³C-NMR spectrum of **17** in d₆-DMSO

Fig. S28 ¹³C-NMR spectrum of **19** in d₆-DMSO

11. DSC plots of **7-9**, and **14-16**

Fig. S29 The DSC plot (5 °C min⁻¹) of 7

Fig. S30 The DSC plot (5 °C min⁻¹) of 8

Fig. S31 The DSC plot (5 °C min⁻¹) of 9

Fig. S32 The DSC plot (5 $^{\circ}$ C min⁻¹) of 14

Fig. S33 The DSC plot (5 °C min⁻¹) of **15**

Fig. S34 The DSC plot (5 °C min⁻¹) of 16

Fig. S35 The TGA plot (5 °C min⁻¹) of 11

Fig. S36 The TGA plot (5 °C min⁻¹) of 12a

Fig. S37 The TGA plot (5 °C min⁻¹) of **12b**

Fig. S38 The TGA plot (5 °C min⁻¹) of 13

Fig. S39 The TGA plot (5 °C min⁻¹) of 17

Fig. S40 The TGA plot (5 °C min⁻¹) of **19**

13. IR spectra of 7-9, 11-17, and 19

Fig. S41 The IR spectrum of 7

Fig. S42 The IR spectrum of 8

Fig. S43 The IR spectrum of 9

Fig. S44 The IR spectrum of 11

Fig. S45 The IR spectrum of 12a

Fig. S46 The IR spectrum of **12b**

Fig. S47 The IR spectrum of 13

Fig. S48 The IR spectrum of 14

Fig. S49 The IR spectrum of 15

Fig. S50 The IR spectrum of 16

Fig. S51 The IR spectrum of 17

Fig. S52 The IR spectrum of 19

14. Computational details

All of the *ab initio* calculations involved in this work were carried out using the Gaussian 09 suite of programs.¹ The geometric optimization and frequency analyses of the structures are based on available single-crystal structures and using the B3LYP functional with the 6-31++G(d, p) basis set. The geometrical configurations were optimized with no constraints imposed under default convergence criteria. All of the optimized structures were characterized to be true local energy minima on the potential energy surface without imaginary frequencies. Total energy (E_0) and zero-point energy (ZPE) were calculated with vibration frequencies analysis.

Volume ($V_{\rm m}$) was calculated based on the optimized structures. The surface electrostatic potential was calculated by Multiwfn program.²

The density was obtained using an improved equation proposed by Politzer et al. considering intermolecular interactions within the crystal.³

$$\rho(\text{crystal}) = \alpha[\frac{M}{V(0.001)}] + \beta(\upsilon \sigma_{tot}^2) + \gamma$$
(1)

Here V(0.001) is the volume in cm³/molecule and is encompassed by the 0.001 au contour of the electronic density, *M* is the molecular mass in g/molecule, *v* is the balance of charges between positive potential and negative potential on molecular surface, and σ_{tot}^2 stands for strengths and variabilities of the overall surface potentials. The value of α , β , and γ have been reported by Peter Politzer et al.³

Heat of formation is another important parameter for energetic compounds. An isodesmic reaction processes is designed to screen the values of heat of formation for gas. So heats of formation of molecules can be given in terms of eq $(2)^4$:

$$R(NO_2)_n + nCH_4 \rightarrow RH_n + nCH_3NO_2$$
⁽²⁾

According to Hess' law of constant heat summation condensed-phase heats of formation can be determined.⁵

$$\Delta H(\text{solid}) = \Delta H(\text{gas}) - \Delta H(\text{sublimation})$$
(3)

The enthalpy of sublimation can be represented as eq (4) and on the basis of the predicted electrostatic potential of a molecule.⁶

$$\Delta H(\text{sublimation}) = \mathbf{a}(SA)^2 + \mathbf{b}\sqrt{\upsilon\sigma_{\text{tot}}^2} + c \tag{4}$$

Here *SA* is the surface area of the 0.001 electrons bohr⁻³ isosurface of the electronic density of the HEDMs, $v\sigma_{tot}^2$ is derived from the molecular electrostatic potential calculation, and a, b, c are fitting parameters reported by Politzer et al.^{6a}

12 a, b

Scheme S1. Isodesmic reactions for 7-9, and 11-19

References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, *Gaussian 09, Revision A.02*, Gaussian, Inc., Wallingford CT, 2009.
- 2 T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580.
- 3 P. Politzer, J. Martinez, J. S. Murray, M. C. Concha and A. Toro-Labbé, *Mol. Phys.*, 2009, **107**, 2095.
- 4 J. Zhang, H. Du, F. Wang, X. Gong and Y. Huang, J. Phys. Chem. A, 2011, 115, 6617.
- 5 P. W. Atkins, *Physical Chemistry*, Oxford University Press, Oxford, U.K., 1982.
- 6 (a) P. Politzer, J. S. Murray, T. Brinck and P. Lane, *Immunoanalysis of Agrochemicals*, ACS Sympsium Series 586, American Chemical Society, Washington, DC, 1994; (b) J. S. Murray, P. Politzer, *In Quantitative Treatment of Solute/ Solvent Interactions, Theoretical and Computational Chemistry*, Elsevier, Amsterdam, 1994.