Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Ultra high capacity of hydrogen storage in Li decorated two-dimensional C₂N layer

Arqum Hashmi, M. Umar. Farooq, Imran Khan, Jicheol Son, and Jisang Hong* Department of Physics, Pukyong National University, Busan 608-737, Korea

AUTHOR INFORMATION

Corresponding Author

*E-mail: hongj@pknu.ac.kr

Adsorption Energies of H_2 on a single layer C_2N

The total energy of Vacancy site (V) is set to zero as a reference energy.

TABLE SI: Calculated Energy difference and	adsorption energies (in eV) of H_2 at Pristine C_2N .
--	---

System	Vacancy	N-top	Hollow-I	Hollow-II	C-top
(Different sites)	(V)	(N)	(H ₁)	(H ₂)	(C)
Energy difference	0	0.02	0.06	0.05	0.07
Adsorption energy	0.12	0.1	0.06	0.07	0.05

Fig. S1 Top and side view of most stable optimized geometry of one hydrogen molecule absorbed on the holey C2N. The gray, blue and red balls represent carbon, nitrogen and hydrogen atoms respectively.

Binding Energies of Li at single layer C₂N-h2D

Different adsorption sites for single Li has been checked to find out the most stable site. This corresponds to C_2N single side Li adsorption.

The total energy of Vacancy site (V) is set to zero as a reference energy.

	TABLE S2: Calculated Energy difference (in eV) of single Li decorated C ₂ N.						
System	Vacancy	N-top	Hollow-I	Hollow-II	C-top		

(Different sites)	(V)	(N)	(H ₁)	(H ₂)	(C)
Energy difference	0	moved to V-site	3.04	2.85	moved to V-site

Different adsorption sites for 2 Li atoms has been checked to find out the most stable site. This corresponds to C_2N double side Li adsorption.

The total energy of Vacancy site (V up & dn) is set to zero as a reference energy.

System	V (up & dn)	C+N-top	C-top	H ₂ +H ₂	N-top	H_1+V
Energy difference	0	Not-seen	Not-seen	4.80	Not-seen	1.34

Different adsorption sites for various Li concentrations is checked. It was found that Li atom always prefers to the vacancy site.

Fig. S2 Variation in binding energy with increasing Li content at holey C_2N layer.

Bandstructures of Li doped C₂N-h2D

Fig. S3 Li doped calculated band structures. 1-Li doped C₂N layer bandstructures are shown (a) based on PBE+vdW
(b) and HSE06 exchange correlation functional, respectively. 6-Li doped C₂N layer bandstructures (c) based on PBE+vdW
PBE+vdW (d) and HSE06. The blue solid line at zero indicates the Fermi level.

Adsorption Energies of H₂ at Li doped C₂N-h2D

Binding of Li at C_2N layer is calculated by

$$E_{ads} = \frac{E_{C_2N - Li} + nE_{H_2} - E_{tot}}{n}$$

Here E_{C_2N-Li} and E_{H_2} are the total energy of Li doped C₂N layer and energy of H₂ molecule in same slab, n is the number of H₂ molecules while E_{tot} is the energy of hydrogen adsorbed Li doped C₂N.

PDOS of the C2N decorated by Li before and after H2 adsorption

Fig. S4 The PDOS of the Li doped C₂N before and after H2 adsorption. Li doped C₂N before H₂ adsorption (a) Carbon & Nitrogen PDOS (b) Adsorbed Li PDOS. 6H₂ adsorbed LiC₂N PDOS of (c) Carbon & Nitrogen (d) Li PDOS. (e-f) LiC₂N with 12H₂ adsorbed PDOS of C2N and Li respectively. (g-h) PDOS of C2N & Li respectively with 18H₂ molecules and (i-j) PDOS of C2N & Li respectively with 20H₂ molecules.