Supporting information for: Challenges in Calculating the Bandgap of Triazine-Based Carbon Nitride Structures

Stephan N. Steinmann,^{†,¶} Sigismund T.A.G. Melissen[‡],^{*,†,¶} Tangui Le Bahers,[†] and Philippe Sautet^{*,†,‡}

†Université de Lyon, Centre National de la Recherche Scientifique
École Normale Supérieure de Lyon, Université Lyon 1
Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
‡Present addresses:

P. Sautet: at the Department of Chemical and Biomolecular engineering University of California, Los Angeles Los Angeles, CA 90095, USA

> S.T.A.G. Melissen: at the Institut Lumière Matière UMR 5306 Université Lyon 1-CNRS, Université de Lyon, F-69622, Villeurbanne, France ¶Contributed equally to this work

E-mail: sigismund.melissen@univ-lyon1.fr; philippe.sautet@ens-lyon.fr Phone: +33.4.72.43.29.69. Fax: +33.4.37.37.26.71

1 Optimized Geometries

Structures discussed in this paper following VASP's POSCAR format.^{S1}

1.1 $gt-C_6N_9H_3$

1.1.1 2L structure

```
2L_gtC6N9H3_optimized_with_C14_HSE06D2_8Angstroms_Vac_added
1.
   0.85594000000E+01
                        0.00000000000E+00
                                              0.0
  -0.42797000000E+01
                        0.741265784115E+01
                                              0.0
   0.0000000000E+00
                        0.0000000000E+00
                                              11.2763528969
Direct
C N H
12 18 6
-0.1693885607
                 0.4646310227
                                  0.290416816
-0.3659804166
                 0.1693885607
                                  0.290416816
-0.4646310227
                 0.3659804166
                                  0.290416816
0.4646310227
                -0.1693885607
                                  0.290416816
0.1693885607
                -0.3659804166
                                  0.290416816
0.3659804166
                -0.4646310227
                                  0.290416816
0.1693885607
                -0.4646310227
                                  0.0001339433
0.4646310227
                -0.3659804166
                                  0.0001339433
0.3659804166
                -0.1693885607
                                  0.0001339433
-0.3659804166
                 0.4646310227
                                  0.0001339433
-0.1693885607
                 0.3659804166
                                  0.0001339433
-0.4646310227
                 0.1693885607
                                  0.0001339433
-0.1917762021
                 0.3000401463
                                  0.2903939201
0.4918163484
                0.1917762021
                                 0.2903939201
-0.3000401463
                 -0.4918163484
                                   0.2903939201
0.3000401463
                -0.1917762021
                                  0.2903939201
                0.4918163484
0.1917762021
                                 0.2903939201
-0.4918163484
                 -0.3000401463
                                   0.2903939201
-0.3861925692
                 -1.147225583652E-013
                                          0.2905507593
0.3861925692
                0.3861925692
                                 0.2905507593
1.468825061579E-013
                       -0.3861925692
                                         0.2905507593
0.1917762021
                -0.3000401463
                                  0.0001568392
0.3000401463
                0.4918163484
                                 0.0001568392
-0.4918163484
                 -0.1917762021
                                   0.0001568392
0.4918163484
                0.3000401463
                                 0.0001568392
-0.1917762021
                 -0.4918163484
                                   0.0001568392
-0.3000401463
                 0.1917762021
                                  0.0001568392
```

0.3861925692 1.147225603875E-013 0.0 -1.468825061579E-013 0.3861925692 0.0 -0.3861925692 -0.3861925692 0.0 -0.2681975334-7.962613834704E-014 0.2881268241 0.2681975334 0.2681975334 0.2881268241 1.01890718085E-013 -0.26819753340.2881268241 7.962614036926E-014 0.2681975334 0.0024239352 -1.01890718085E-013 0.2681975334 0.0024239352 -0.2681975334-0.2681975334 0.0024239352

1.1.2 1L structure

Hi 1. 0.85594000000E+01 0.00000000000E+00 0.00 0.741265784115E+01 -0.42797000000E+01 0.00 0.0000000000E+00 0.00000000000E+00 8. CNH 693 Direct -1.694935647918E-01 4.645960748716E-01 0.0 -3.659103603366E-01 1.694935647917E-01 0.0 -4.645960748717E-01 3.659103603367E-01 0.0 4.645960748717E-01 -1.694935647916E-01 0.0 1.694935647918E-01 -3.659103603367E-01 0.0 3.659103603366E-01 -4.645960748717E-01 0.0 -1.917793033346E-01 3.000534800232E-01 0.0 4.918327833577E-01 1.917793033345E-01 0.0 -3.000534800231E-01 -4.918327833577E-01 0.0 3.000534800231E-01 -1.917793033345E-01 0.0 1.917793033346E-01 4.918327833578E-01 0.0 -4.918327833577E-01 -3.000534800233E-01 0.0 -3.860057297850E-01 -1.146670738586E-13 0.0 3.860057297849E-01 3.860057297848E-01 0.0 1.468269950067E-13 -3.860057297847E-01 0.0 -2.679058929724E-01 -7.953953536332E-14 0.0 2.679058929723E-01 2.679058929722E-01 0.0 1.019184736606E-13 -2.679058929722E-01 0.0

1.2.1 2L			
Structure			
1.0			
7.9	577999115	0.000000000	0.0
-3.9	788999557	6.8916568816	0.0
0.00	00000000	0.000000000	12.6951957
C N			
18 24			
Direct			
0.157457888	0.485884547	0.0219953915	
0.514115453	0.671573341	0.0219953915	
0.328426659	0.842542112	0.0219953915	
0.667454422	0.509917855	0.0498863676	
0.842463434	0.332545578	0.0498863676	
0.490082145	0.157536581	0.0498863676	
0.176245421	0.994959533	0.0838743431	
0.005040465	0.181285888	0.0838743431	
0.818714142	0.823754549	0.0838743431	
0.328312218	0.48537755	0.2858700792	
0.157065302	0.671687782	0.2858700792	
0.51462245	0.842934728	0.2858700792	
0.843253553	0.509124517	0.3199880566	
0.490875512	0.334129065	0.3199880566	
0.665870905	0.156746447	0.3199880566	
0.819237888	0.995093465	0.3477280701	
0.175855592	0.180762127	0.3477280701	
0.004906541	0.824144423	0.3477280701	
0.846060276	0.657347918	0.3698403562	
0.342652082	0.188712344	0.3698403562	
0.811287642	0.153939754	0.3698403562	
0. 0.	0.3598404316		
0.163372427	0.331154585	0.314008259	
0.167782143	0.836627603	0.314008259	
0.668845415	0.832217872	0.314008259	
0.666666627	0.333333343	0.3199635985	
0.333333343	0.666666627	0.2724174862	
0.519706726	0.00963241	0.2699215657	
0.489925653	0.480293244	0.2699215657	
0.990367591	0.510074377	0.2699215657	
0.813594401	0.657072127	0.0999445798	
0.843477726	0.186405584	0.0999445798	
0.342927873	0.156522304	0.0999445798	

0.	0.	0.0973191063	
0.1	69932812	0.335434109	0.0556077682
0.6	64565921	0.834498703	0.0556077682
0.1	.65501297	0.830067158	0.0556077682
0.6	66666627	0.333333343	0.0499685326
0.3	33333343	0.666666627	0.0098891977
0.4	87325788	0.009367808	0.
0.9	90632176	0.477957994	0.
0.5	522042036	0.512674212	0.

1.2.2 1L

Structure 1. 0.795782819552E+01 0.00000000000E+00 0.00000000 -0.397891409776E+01 0.689168137626E+01 0.00000000 0.00000000000E+00 0.00000000000E+00 9.293814019 CN 9 12 Direct -0.1812839965 -0.0053783896 0.1128511306 0.1759056069 0.1812839965 0.1128511306 0.0053783896 -0.1759056069 0.1128511306 -0.1571034734 -0.4904113449 0.0695790195 0.4904113449 0.3333078715 0.0695790195 -0.3333078715 0.1571034734 0.0695790195 0.3279234178 0.4854056891 0.0268335968 0.1574822713 -0.3279234178 0.0268335968 -0.4854056891 -0.1574822713 0.0268335968 -0.1548312733 -0.3432229182 0.1392123854 0.3432229182 0.1883916449 0.1392123854 -0.1883916449 0.1548312733 0.1392123854 -7.504860209976E-021 -1.065339115641E-020 0.1297390667 0.1641300942 0.3334477186 0.070073754 0.1693176245 -0.1641300942 0.070073754 -0.3334477186 -0.1693176245 0.070073754 -0.3333333333 0.333333333 0.0694742029 0.3333333333 -0.333333333 0.0099549026 -0.4781761423 0.0097871211 0. 0.4879632634 0.4781761423 0. -0.0097871211 -0.4879632634 0.

```
1.3.1 Bulk
```

Structure 1. 0.410855446480E+01 -0.237207502623E+01 0.00000000000E+00 0.0000000000E+00 0.00000000000E+00 0.474415005246E+01 0.0000000000E+00 0.00000000000E+00 0.622073756495E+01 CN 68 Direct 3.513244909828E-01 1.756622454914E-01 0.0E+00 -1.756622454914E-01 1.756622454915E-01 0.0E+00 -1.756622454914E-01 -3.513244909830E-01 0.0E+00 1.949094892743E-02 -4.902545255363E-01 -5.0E-01 4.902545255355E-01 -4.902545255367E-01 -5.0E-01 4.902545255371E-01 -1.949094892705E-02 -5.0E-01 0.0000000000E+00 0.000000000E+00 0.0E+00 -3.3333333333332E-01 3.3333333333332E-01 -5.0E-01 1.699004685402E-01 3.398009370808E-01 -5.0E-01 -3.398009370804E-01 -1.699004685403E-01 -5.0E-01 1.699004685402E-01 -1.699004685405E-01 -5.0E-01 -4.968195370740E-01 4.968195370738E-01 0.0E+00 -4.968195370742E-01 6.360925851818E-03 0.0E+00 -6.360925851826E-03 4.968195370744E-01 0.0E+00

1.3.2 2L

Structure

```
1.
  0.474415005246E+01
                       0.0000000000E+00
                                             0.00000000
 -0.237207502623E+01
                       0.410855446480E+01
                                             0.00000000
  0.00000000000E+00
                       0.00000000000E+00
                                             11.15131735
C N
68
Direct
0.0191371633 -0.4904314184 0.2825119398
0.4904314184 -0.4904314184 0.2825119398
0.4904314184 -0.0191371633 0.2825119398
0.3517574796 0.1758787398 0.0007659894
-0.1758787398 0.1758787398 0.0007659894
-0.1758787398 -0.3517574796 0.0007659894
-0.3333333333 0.333333333 0.2820712255
0.169857561 0.3397151219 0.2825959709
```

```
-0.3397151219 -0.169857561 0.2825959709
0.169857561 -0.169857561 0.2825959709
1.387176040957E-022 9.263113975576E-022 0.
-0.4968405732 0.4968405732 0.0007946252
-0.4968405732 0.0063188537 0.0007946252
-0.0063188537 0.4968405732 0.0007946252
```

1.3.3 1L

Structure 1. 0.474415005246E+01 0.0000000000E+00 0.0000000000E+00 -0.237207502623E+01 0.410855446480E+01 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 8.0 CN 34 Direct 1.881867836482E-02 -4.905906608176E-01 0.0 4.905906608168E-01 -4.905906608180E-01 0.0 4.905906608184E-01 -1.881867836443E-02 0.0 -3.333333333332E-01 3.3333333333332E-01 0.0 1.698146035883E-01 3.396292071770E-01 0.0 -3.396292071766E-01 -1.698146035884E-01 0.0 1.698146035883E-01 -1.698146035886E-01 0.0

2 Convergence of GW results with various settings

2.1 Periodic Systems

 G_0W_0 computations have been used to check the technical convergence. Table S1 demonstrates a good convergence of the optical gap for a cutoff of 100 eV for the GW computations.

Table S1: Column 1: Total number of bands considered. Column 2: Number of virtual orbitals included in the GW computation. Column 3 and 4: Number of valence and virtual orbitals used to solve the BSE equation for the studied systems. Column 5 and 6: Optical gap for a cutoff of 100 eV and 150 eV for the GW computations; the value in parenthesis is obtained with a cutoff of 200 eV. "cor." is short for "corrugated."

	#	GW Virt.	Val.	Virt.	\mathbf{E}_{q}^{opt}	\mathbf{E}_{q}^{opt}
	Bands	Orb.	Orb.	Orb.	100 eV	$150~{\rm eV}$
3D flat gt -C ₃ N ₄	80	8	4	4	2.14	2.18
$2L$ flat gt - C_3N_4	80	8	4	6	2.05	2.09
1L flat gt -C ₃ N ₄	48	8	2	4	2.02	2.07
3D corr. gt -C ₃ N ₄	240	24	26	18	3.42	3.14(3.15)
$2L$ corr. gt - C_3N_4	240	24	22	14	3.06	3.07
1L corr. gt -C ₃ N ₄	128	16	11	10	3.03	3.04
$3D gt-C_6N_9H_3$	184	20	20	16	3.86	3.89
$2L gt-C_6N_9H_3$	192	24	14	16	3.80	3.83
$1\mathrm{L}~gt\text{-}\mathrm{C}_{6}\mathrm{N}_{9}\mathrm{H}_{3}$	96	12	7	7	3.86	3.90

Figure S1: K-point convergence of the optical gap for CNs. The single layer systems and G_0W_0 based on PBE orbitals are used to reduce the computational cost.

Figure S2: scGW@HSE Band-gaps for 2L, flat gt-C₃N₄as a function of the interlayer distance. The bulk corresponds to the smallest distance considered, while 8 Å is the distance we used for all other systems as well.

Table S2: Column 1: Total number of bands considered. Column 2: Number of virtual orbitals included in the GW computation. All computations refer to a $3 \times 3 \times 1$ K-point mesh and a cutoff energy of 100 eV for the GW operators and G_0W_0 computations based on PBE orbitals.

System	#Bands	GW Virt. Orb.	Val. Orb.	Virt. Orb.	\mathbf{E}_{g}^{opt}
3D flat gt -C ₃ N ₄	80	8	4	4	2.12
3D flat gt -C ₃ N ₄	96	8	4	4	2.10
3D flat gt -C ₃ N ₄	80	16	4	4	2.14
$2L$ flat gt - C_3N_4	80	8	4	6	2.01
$2L$ flat gt - C_3N_4	96	8	4	6	2.04
$2L$ flat gt - C_3N_4	80	16	4	6	2.05
1L flat gt -C ₃ N ₄	48	8	2	4	1.98
1L flat gt -C ₃ N ₄	64	8	2	4	2.02
1L flat gt -C ₃ N ₄	48	16	2	4	2.02

Figure S3: K-point convergence of the optical and electronic gap for CNs. The single layer systems and G_0W_0 based on PBE orbitals are used to reduce the computational cost.

2.2 Molecules

Figure S4: Lowest lying excitation energies (i.e., optical gaps) for the molecules investigated. The excitation energies of various computational levels are plotted against the reference theoretical level. "S" stands for a "small" basis set/standard numerical settings, while "L" stands for a "large" basis set/improved numerical settings. For EOM-CCSD we estimate (indicated by the asterisk) the effect of increasing the basis set: EOM-CCSD/L*=EOM-CCSD/cc-pVDZ - TD-B2PLYP/cc-pVDZ + TD-B2PLYP/def2-TZVP. Details for BSE/GW computations are given in Table S3.

Table S3: Column 1: Total number of bands considered. Column 2: Number of virtual orbitals included in the scGW computation. Column 3 and 5: Orbitals included in the BSE computation. All computations are performed at the Γ point with a plane-wave cutoff of 400 eV and are based on HSE orbitals.

System	#Bands	GW Virt. Orb.	Val. Orb.	Virt. Orb.	\mathbf{E}_{g}^{el}	\mathbf{E}_{g}^{opt}	
S: 100 eV cutoff for GW							
heptazine gt -C ₃ N ₄	80	9	10	15	8.27	3.30	
melem gt -C ₃ N ₄	138	32	13	13	7.3	4.82	
triazine gt -C ₃ N ₄	64	17	12	16	10.03	5.15	
melamine gt -C ₃ N ₄	96	24	8	13	8.06	5.07	
melam $gt\text{-}\mathrm{C}_3\mathrm{N}_4$	128	20	15	20	7.78	5.25	
L: 150 eV cutoff for GW							
heptazine gt -C ₃ N ₄	160	49	10	15	7.85	3.15	
melem gt -C ₃ N ₄	272	170	13	13	7.30	4.83	
triazine gt -C ₃ N ₄	192	113	12	16	9.84	4.90	
melamine gt -C ₃ N ₄	192	120	8	13	7.99	5.06	
melam gt -C ₃ N ₄	256	148	15	22	7.56	5.15	

3 Optical Spectra

Figure S5: Real dielectric function for different methods and systems.

References

(S1) Kresse, G.; Lebacq, O. VASP manual. cms. mpi. univie. ac. at/vasp/vasp/vasp. html
 2013,

Figure S6: Imaginary dielectric function for different methods and systems.

Figure S7: Absorption spectra for different methods and systems. A Gaussian broadening of 0.1 eV has been applied.