Highly efficient visible-light-driven catalytic hydrogen evolution from ammonia borane using non-precious metal nanoparticles supported

by graphitic carbon nitride

Hao Zhang, Xiaojun Gu*, Penglong Liu, Jin Song, Jia Cheng and Haiquan Su* Inner Mongolia Key Laboratory of Coal Chemistry, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China *E-mail: xiaojun.gu@yahoo.com, haiquansu@yahoo.com

Fig. S1 EDS pattern of Co/C₃N₄-1.

Fig. S2 EDS pattern of Co/C_3N_4 -2.

Fig. S3 EDS pattern of (c) $CuCo/C_3N_4$ -1.

Fig. S4 EDS pattern of $FeCo/C_3N_4$ -1.

Fig. S5 TEM image and EDS pattern of Ni/g-C₃N₄-1.

Fig. S6 TEM image and EDS pattern of $Fe/g-C_3N_4-1$.

Fig. S7 TEM image and EDS pattern of NiCo/g-C₃N₄-1.

Fig. S8 TEM image and EDS pattern of FeNi/g-C₃N₄-1.

Fig. S9 TEM image and EDS pattern of CuNi/g-C₃N₄-1.

Fig. S10 PXRD patterns of (a) Co/g-C₃N₄-1, (b) Ni/g-C₃N₄-1, (c) Fe/g-C₃N₄-1, (d) Co/g-C₃N4-2, (e) Ni/g-C₃N₄-2, (f) Fe/g-C₃N₄-2, (g) CuCo/g-C₃N₄-1, (h) NiCo/g-C₃N₄-1, (i) FeCo/g-C₃N₄-1, (j) CuNi/g-C₃N₄-1, (k) FeNi/g-C₃N₄-1 and (l) g-C₃N₄.

Fig. S11 XPS patterns for Co/g-C₃N₄-1 before and after Ar etching.

Fig. S12 XPS patterns for $Co/g-C_3N_4$ -2 before and after Ar etching.

Fig. S13 XPS patterns for CuCo/g-C $_3N_4$ -1 before and after Ar etching.

Fig. S14 XPS patterns for NiCo/g-C₃N₄-1-Co before and after Ar etching.

Fig. S15 UV-Vis adsorption spectra of g- C_3N_4 and the ex situ-synthesized catalysts.

Fig. S16 Photoluminescence spectra of g-C $_3N_4$ and the ex situ-synthesized catalysts.

Fig. S17 Plots of time versus volume of generated H_2 from NH_3BH_3 aqueous solution over $Fe/g-C_3N_4-1$ and $Fe/g-C_3N_4-2$ under visible light irradiation and in the dark at 298 K.

Fig. S18 (a) Plots of time versus volume of generated H_2 from NH_3BH_3 aqueous solution over different bimetallic catalysts under visible light irradiation and in the dark at 298 K and (b) the corresponding total TOF values of the above two catalysts under two different conditions.

Fig. S19 XPS patterns for (a) Co/g-C₃N₄-1, (b) CuCo/g-C₃N₄-1-Co, (c) FeCo/g-C₃N₄-1-Co and (d) NiCo/g-C₃N₄-1-Co after Ar etching.