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Experimental section 

Synthesis of hierarchically porous carbon (HPC): Typically, 2 g of sucrose was dissolved in 28 

ml of 0.1 M HCl aqueous solution. Then 13 ml of colloidal silica (Snowtex-UP, Nissan Chemical) 

was added to form a homogeneous precursor solution. The solution was then sent through the 

aerosol atomizer to produce aerosol droplets by a nitrogen flow. The temperature of the heating 

zone was set at 400 °C. The resulting particles were collected by filter and then processed to 

carbonization by the following heating procedure: heating at 500 °C for 5 h and then at 900 oC for 

5h with a heating rate of 5 °C min-1. The resulting black carbon/silica composite particles were 

then repeatedly etched by 5% HF to remove silica templates. The resulting HPC particles were 

then filtered, rinsed several times with deionized water, and dried in an oven at 80 °C.

Synthesis of SnO2-C composite: 100 mg of SnCl2 (Sigma) was firstly grinded using a mortar. 60 

mg of HPC was then added and homogeneously grinded with the fine SnCl2 particles for 30 

minutes. The mixture was then transferred to a glass vial and vacuumized for 30 minutes. The vial 

was sealed under vacuum and treated at 280 °C for 3 h with a heating rate of 20 °C min-1. Finally, 

after cooling down, the vial was opened and further heated at 230 °C for 5 h in air with a heating 

rate of 10 °C min-1.

Synthesis of SnO2: SnO2 was obtained by rapid combustion of as-synthesized SnO2-C composite 

using a heating rate of 10 °C min-1 to 700 oC, and then cooling down naturally. 

Materials characterizations: Nitrogen adsorption/desorption isotherms at 77 K were measured 

using a Micromeritics ASAP 2020 analyzer. Thermogravimetric analysis was conducted in air by 

holding at 120 oC for 20 minutes and ramping afterwards by 10 °C min-1 to 700 °C. X-ray 

diffraction measurements were carried out on a Rigaku X-ray powder diffractometer by using Cu 

Kα radiation. Scanning electron microscopy (SEM) images were obtained with a JEOL JSM-6700 
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FESEM. Transmission electron microscopy (TEM) images were obtained with a FEI T12 operated 

at 120 kV. High-resolution (HR) TEM and energy dispersive X-ray spectroscopy (EDX) analyses 

were performed on a FEI Titan S/TEM (300 kV for TEM imaging and 200 kV for STEM and 

EDX).

Electrochemical characterizations: The working electrodes were prepared by mixing SnO2-C 

composite, super P, and sodium alginate with a mass ratio of 6:2:2 into a homogenously slurry 

with deionized water. The slurry was then pasted on a copper foil (MTI) using a doctor blade with 

a resulting mass loading of ~0.7-1 mg cm-2 (specific capacity is based on the mass of SnO2-C 

composite). Electrodes for SnO2
 were prepared in the same way. The electrolyte was commercial 

1M LiPF6 in ethylene carbonate/diethyl carbonate (EC: DEC) with a volume ratio of 1:1. The half-

cells were assembled using 2032-tpye coin cells in an argon-filled glove box by using lithium foil 

as counter electrode and glass fiber (GF/C, Whatman) as separator. The cyclic voltammetry curves 

were measured by Bio-logic VWP3 in a voltage window of 0.02-3 V at a scan rate of 0.5 mV s-1. 

The galvanostatic discharge/charge tests were performed on LAND2001 battery test system at 

room temperature, and the voltage window was from 0.02 to 3 V (vs. Li/Li+). The electrochemical 

impedance spectroscopy (EIS) was carried out in the frequency range from 100 kHz to 10 mHz on 

a Salatron 1860/1287.
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Fig. S1 TGA curve of SnO2-C composite.
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Fig. S2 (a) SEM image (inset: photograph) and (b) XRD pattern of SnO2 obtained from 
combustion of SnO2-C composite.

Fig. S3 C 1s spectra of (a) SnO2-C composite and (b) HPC (inset: survey scan). The 
existence of oxygen is attributed to oxygen-containing functional groups on surface.
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Fig. S4 Cycle performance of HPC at 0.2 A g-1. Based on the capacity in the 10th cycle, 
the specific capacity of SnO2 could be estimated using the following equation:
CSnO2 = (CSnO2-C - w%HPC * CHPC)/w%SnO2 = (964 - 0.56 * 843)/0.44 ≈ 1120 mAh g-1

Although HPC can deliver rather high specific capacity by itself, the low Coulombic 
efficiency of ca. 95 % and low density make it unsuitable for practical use.

Fig. S5 Cycle performance comparison between SnO2 and SnO2-C composite (Voltage 
window: 0.02-3 V vs. Li/Li+, current density: 0.2 A g-1).
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Fig. S6 EIS spectrums of (a) SnO2 and (b) SnO2-C composite after 1st, 11th and 21st cycle 
at 0.2 A g-1 (charged to 3V vs. Li/Li+). Insets show magnified plots and equalivalent cicuirt 
model. Comparison of (c) Bulk resistance and (d) charge transfer resistance between 
SnO2 and SnO2-C composite.
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Table S1. Comparison of surface area, pore volume and average pore size of HPC and 
SnO2-C composite.

BET surface area 
(m2 g-1)

BJH pore volume
(cm3 g-1)

BJH average pore size
(nm)

HPC 1349 3.84 10.7

SnO2-C 
composite 689 1.32 6.7

Table S2. Electrochemical performance comparison of various SnO2-based anodes.

SnO2-based anodes Preparation 
methods Cycling performances Ref

SnO2@HPC Melt infiltration of 
SnCl2

1400 mAh g-1 (600th cycle) at 
0.2 A g-1

This 
work

Bowl-like 
SnO2@Carbon Hydrothermal 963 mAh g-1 (100th cycle) at 

0.4 A g-1 1

Tubular 
SnO2@Carbon Hydrothermal

700 mAh g-1 (50th cycle) at 0.2 
A g-1

(0.05-1.5V)
2

SnO2 nanotubes Hydrothermal
513 mAh g-1 (50th cycle) at 0.4 

A g-1

(0.005-1.2V)
3

Fluorine-doped SnO2 Laser process 778 mAh g-1 (100th cycle) at 
0.1 A g-1 4

Antimony-doped 
SnO2

Electrospinning 800 mAh g-1 (100th cycle) at 
0.1 A g-1 5

SnO2@graphene Hydrothermal 720 mAh g-1 (70th cycle) at 0.1 
A g-1 6

SnO2@Mesoporous 
carbon

Wet impregnation of 
SnCl4·5H2O

978 mAh g-1 (100th cycle) at 
0.2 A g-1 7

SnO2@Tubular
mesoporous carbon

Wet impregnation of 
SnCl4·5H2O

630 mAh g-1 (50th cycle) at 0.5 
A g-1 8

SnO2@Carbon 
nanotube

Wet impregnation of 
SnCl4·5H2O

757 mAh g-1 (50th cycle) at 0.1 
A g-1 9

SnO2 hollow 
nanospheres

Molten infiltration of 
SnCl2·2H2O

700 mAh g-1 (20th cycle) at 
0.16 A g-1 10

SnO2@Carbon 
nanotube

Wet impregnation of 
SnCl2·2H2O

556 mAh g-1 (50th cycle) at 
0.05 A g-1 11

SnO2@Carbon 
nanotube

Wet impregnation of 
SnCl2·2H2O under 

vacuum

430 mAh g-1 (300th cycle) at 
0.1 A g-1 12

SnO2@Mesoporous 
carbon

Wet impregnation of 
SnCl2

1145 mAh g-1 (30th cycle) at 
0.08 A g-1 13
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Table S3. Cycle performance comparison between SnO2 and SnO2-C composite at 0.2 
A g-1 for the first 20 cycles.

Initial CE Average CEa Capacity retention
SnO2 63.4% 97% 78%

SnO2-C 65.2% 98% 100 %
a excluding the first cycle
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