Supporting Information

MOFs-derived Bi-metal Embedded N-doped Carbon Polyhedral

Nanocages with Enhanced Lithium Storage

Man Huang,^{a,b} Kan Mi,^b Junhao Zhang,^{*,a} Huili Liu,^a Tingting Yu,^a Aihua Yuan,^{*,a} Qinghong Kong^c, and Shenglin Xiong^{*,b}

^aSchool of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China.

^bKey Laboratory of the Colloid and Interface Chemistry, Ministry of Education,

School

of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China.

^cSchool of the Environment and safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China

*Correspondence and requests for materials should be addressed to J.H.Z. (jhzhang6@just.edu.cn) or A.H.Y. (aihua.yuan@just.edu.cn) or S.L.X. (chexsl@sdu.edu.cn).

Figure S1. XRD patterns of the as-synthesized ZIF-8, ZIF-67, and ZIF-8@ZIF-67 crystals.

Figure S2. TGA curves of ZIF-8 and ZIF-8@ZIF-67.

Figure S3. FESEM images of (A) ZIF-8, (B) ZIF-67, (C) ZIF-8@ZIF-67, (D) ZIF-8 derived N-doped C. Scale bars: (A- C) 500 nm; (D) 300 nm; the inset (C,D) 100 nm.

Figure S4. (A) elemental line profiles (refer to the yellow line in the inset of STEM image), and (B) elemental mappings of ZIF-8@ZIF-67 core-shell polyhedral nanocage (see the inserted STEM image in (A)).

Figure S5. Raman spectrum of porous Co-Zn/N-C polyhedral nanocage.

Figure S6. (A) high magnification TEM image of the wall of porous Co-Zn/N-C polyhedral nanocages; (B) TEM image of CNTs growing on the edge of porous Co-Zn/N-C polyhedral nanocages. Scale bars: (A) 20nm, (B) 50 nm.

Figure S7. Full XPS spectrum of porous Co-Zn/N-C polyhedral nanocages.

Figure S8. FESEM images of Co-Zn/N-C electrodes were observed after 30 charge/discharge cycles at 200 mA g⁻¹. Scale bars: 100 nm (A,B).

Sample	Current density	Cycle number	Final capacity	Current density	Capacity	Reference
	[mA g⁻¹]		[mA h g⁻¹]	[A g⁻¹]	[mA h g ⁻¹]	
Co-Zn/N-C	200	400	702	2	444	This work
porous carbon fibers	186	45	400	3.72	250	[1]
mesoporous carbon	500	1100	485	4	214	[2]
bagasse microwave	100	60	600	2	262	[3]
derived carbons						
nitrogen doped	37.2	500	505	3.72	190	[4]
porous carbon						
porous bio-carbons	372	500	370			[5]
porous carbon	37.2		493	11.16	220	[6]
hierarchically porous	100	100	805	20	210	[7]
carbon						
nitrogen containing	100	50	610	3.8	181	[8]
bio-carbon						
Porous graphene	372	100	926	7.44	211	[9]

Table S1. Comparison of electrochemical performance of porous carbon-based anodes for LIBs.

- C. C. Li, X. M. Yin, L. B. Chen, Q. H. Li, T. H. Wang, *J. Phys. Chem. C*, 2009, **113**, 13438.
- 2 K. F. Huo, W. L. An, J. J. F, B. Gao, L. Wang, et al, *J. Power Sources*, 2016, 324, 233e238
- 3 S. Agarkar, P. Yadav, R, Fernandes, D. Kothari, A. Suryawanshi, S. Ogale, *Electrochim. Acta*, 2016, **212**, 535.
- 4 J. Ou, L. Yang, X. H. Xi, Chin. J. Chem., 2016, 34, 727.
- 5 H. H. Ru, N. B. Bai, K. X. Xiang, W. Zhou, H. Chen, X. S. Zhao, *Electrochim. Acta,* 2016, **194 ,** 10.
- 6 X. X. Liu, D. L. Chao, Y. Li, J. Hao, X. S. Liu, J. P. Zhao, J. Y. Lin, H. J. Fan, Z. X. Shen, *Nano Energy*, 2015, **17**, 43.
- 7 C. Yu, M. Chen, X. j. Li, C. T. Zhao, L. L. He, J. S. Qiu, *J. Mater. Chem. A*, 2015, 3, 5054.
- 8 K. Saravanan, N. Kalaiselvi, carbon, 2015, 81, 43.
- 9 Z. J. Fan, J. Yan, G. Q. Ning, T. Wei, L. J. Zhi, F. Wei, *carbon*, 2013, **60**, 538.