Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

(a)

(b)

Figure: S1 Catalyst synthesis process (a) Fehling's route of catalyst preparation via glucose oxidation assisted precipitation (b) Conventional co-precipitation method using jacketed reactor.

Figure: S2 XRD pattern of calcined CZ(cp) and CZM(cp) catalyst.

Figure: S3 XRD pattern of catalysts: (a) calcined CZ(F) (b) spent CZ (F) (c) calcined CZM(F) and (d) spent CZM(F).

Figure: S4 Representative XPS survey spectra of (a) As synthesized Cu_2O (b) Standard Cu_2O (c) CZ(F) and (d) CZ(cp)

Figure: S5 N_2 adsorption isotherms of calcined hybrid catalysts (a) CZ (F); (b) CZ (cp); (c) CZM(F); (d) CZM(cp)

Figure: S6 IR analysis for CZ(F) (a) before calcination and (b) after calcination

Annexure 1: H₂/Cu ratio calculations

For CZM (F) catalyst

$1 \text{ mol } \text{Cu}(\text{NO}_3)_2 \rightarrow \frac{1}{2} \text{ mol } \text{Cu}_2\text{O}$ $0.55^{\forall} \text{ mol } \text{Cu}(\text{NO}_3)_2 \rightarrow \frac{1}{2} \times 0.55 \text{ mol } \text{Cu}_2\text{O}$ $\rightarrow 0.275 \text{ mol } \text{Cu}_2\text{O}$ $\rightarrow 0.275 \text{ mol } \times 143.09 \text{ g/mol}$ $\rightarrow 39.35g \text{Cu}_2\text{O}$	$1 \mod \operatorname{Cu(NO_3)_2} \to 1 \mod \operatorname{CuO} \\ 0.55^{\psi} \mod \operatorname{Cu(NO_3)_2} \to 0.55 \mod \operatorname{CuO} \\ \to 0.55 \mod \times 79.545 \text{ g/mol} \\ \to 43.75 \operatorname{CuO}$
$1 \text{ mol } Zn(NO_3)_2 \rightarrow 1 \text{ mol } ZnO$ $0.25^{\psi} \text{ mol } Zn(NO_3)_2 \rightarrow 1 \text{ mol } ZnO$ $\rightarrow 0.25 \text{ mol } \times 81.408 \text{ g/mol}$ $\rightarrow 20.35 \text{ g } ZnO$	$1 \mod Zn(NO_3)_2 \rightarrow 1 \mod ZnO$ $0.25^{\psi} \mod Zn(NO_3)_2 \rightarrow 1 \mod ZnO$ $\rightarrow 0.25 \mod \times 81.408 \text{ g/mol}$ $\rightarrow 20.35 \text{g ZnO}$
$1 \mod Mg(NO_3)_2 \rightarrow 1 \mod MgO$ $0.20^{\psi} \mod Mg(NO_3)_2 \rightarrow 1 \mod MgO$ $\rightarrow 0.20 \mod \times 40.305 \text{ g/mol}$ $\rightarrow 8.06g \text{ MgO}$	$1 \mod Mg(NO_3)_2 \rightarrow 1 \mod MgO$ $0.20^{\psi} \mod Mg(NO_3)_2 \rightarrow 1 \mod MgO$ $\rightarrow 0.20 \mod \times 40.305 \text{ g/mol}$ $\rightarrow 8.06g \text{ MgO}$
Total oxides: $39.35g Cu_2O + 20.35g ZnO + 8.06g MgO = 67.76g$	Total oxides: $43.75g Cu_2O + 20.35g ZnO + 8.06g MgO$ = 72.16g
Amount of each component contained in 1g catalyst: $Cu_2O \rightarrow (39.35) \div (67.76) = 0.58g (0.004 \text{ mol})$ $ZnO \rightarrow (20.35) \div (67.76) = 0.30g (0.0037 \text{ mol})$	Amount of each component contained in 1g catalyst: $Cu_2O \rightarrow (43.75) \div (72.16) = 0.61g (0.0076 \text{ mol})$ $ZnO \rightarrow (20.35) \div (72.16) = 0.28g (0.0034 \text{ mol})$
MgO → $(8.06) \div (67.76) = 0.12g$ (0.0029 mol)	$MgO \rightarrow (8.06) \div (72.16) = 0.11g (0.0027 mol)$
$\begin{split} \mathbf{MgO} &\rightarrow (8.06) \div (67.76) = \mathbf{0.12g} \ (\mathbf{0.0029 \ mol}) \\ \mathbf{Theoretically}, \ according to the following equation: \\ & \mathbf{Cu_2O} + \mathbf{H_2} \rightarrow \mathbf{2Cu} + \mathbf{H_2O} \\ 1 \ mol \ \mathbf{Cu_2O} \ will \ consume \rightarrow 1 \ mol \ \mathbf{H_2} \\ & \rightarrow 1000 \ mmol \ \mathbf{H_2} \\ 143.09 \ g \ \mathbf{Cu_2O} \ will \ consume \rightarrow 1000 \ mmol \ \mathbf{H_2} \\ \mathbf{0.58 \ g \ Cu_2O} \ will \ consume \rightarrow \underline{1000 \times 0.58} \ mmol \ \mathbf{H_2} \\ & \underline{143.09} \\ & \rightarrow \underline{143.09} \\ & \rightarrow \underline{\mathbf{0.4058 \times 10 \ mmol \ \mathbf{H_2/g_{catalyst}}} \end{split}$	$MgO \rightarrow (8.06) \div (72.16) = 0.11g (0.0027 \text{ mol})$ $Theoretically, according to the following equation:$ $CuO + H_2 \rightarrow Cu + H_2O$ 1 mol CuO will consume → 1 mol H ₂ → 1000 mmol H ₂ 79.545 g CuO will consume → 1000 mmol H ₂ 0.61 g CuO will consume → 1000×0.61 mmol H ₂ 79.545 → 0.7669×10 mmol H ₂ /g _{catalyst}
MgO → (8.06) ÷ (67.76) = 0.12g (0.0029 mol) Theoretically, according to the following equation: $Cu_2O + H_2 \rightarrow 2Cu + H_2O$ 1 mol Cu ₂ O will consume → 1 mol H ₂ \rightarrow 1000 mmol H ₂ 143.09 g Cu ₂ O will consume → 1000 mmol H ₂ 0.58 g Cu ₂ O will consume → $\frac{1000 \times 0.58}{143.09}$ mmol H ₂ $\frac{143.09}{\rightarrow}$ 0.4058 × 10 mmol H ₂ /g _{catalyst} Since other oxides viz. ZnO and MgO are non reducible oxides in the temperature range of TPR analysis, the H ₂ consumption will be only for Cu ₂ O.	MgO → (8.06) ÷ (72.16) = 0.11g (0.0027 mol) Theoretically, according to the following equation: CuO + H ₂ → Cu + H ₂ O 1 mol CuO will consume → 1 mol H ₂ → 1000 mmol H ₂ 79.545 g CuO will consume → 1000 mmol H ₂ 0.61 g CuO will consume → $\frac{1000 \times 0.61}{79.545}$ mmol H ₂ 79.545 → 0.7669×10 mmol H ₂ /g _{catalyst} Since other oxides viz. ZnO and MgO are non reducible oxides in the temperature range of TPR analysis, the H ₂ consumption will be only for CuO.

0.004 mol Cu₂O will give $\rightarrow 2 \times 0.004$ mol Cu $\rightarrow 0.008$ mol Cu $\rightarrow 0.8 \times 10$ mmol Cu

We observed that as per TPR experiment, consumption of H_2 per gram of catalyst = 0.41×10 mmol/g_{cat}

Thus, H_2/Cu ratio = 4.1/8 = 0.51

We observed that as per TPR experiment, consumption of H_2 per gram of catalyst = **0.7828**×10 mmol/g_{cat}

 $\rightarrow 0.76 \times 10 \text{ mmol Cu}$

For CZM (cp) catalyst

Thus, H_2/Cu ratio = 7.828/7.6 = 1.0

This is close to the ratio obtained by theoretical calculations.