Supplementary Information

Additive-Free Synthesis of Li₄Ti₅O₁₂ Nanowire Arrays on Freestanding Ultrathin Graphite as a Hybrid Anode for Flexible Lithium Ion Battery

Seong Dae Kim, \ddagger^{a} Kuldeep Rana, $\ddagger^{a,b}$, Jong-Hyun Ahn^{*a}

- ^a. School of Electrical and Electronic engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul 03722, Republic of Korea
- ^b.Current address: Electrical Appliance and Technology Division, Central Power Research Institute, Prof. Sir CV Raman Road, Bangalore, Karnataka, 560080, India.
- ‡ S. D. Kim and K. Rana contributed equally to this work

Figure S1. SEM observation of the surface of FSG.

Figure S2. Raman spectrum of FSG.

Figure S3. SEM observation of LTO-Ti (a) Top view. (b) side view.

Figure S4. SEM images of Na₂Ti₂O₅·H₂O NW array on FSG right after hydrothermal process.

Figure S5. XPS spectra of LTO NW on both Ti and FSG with focusing on a) lithium, b) titanium, and c) oxygen.

Figure S6. Cyclic voltammogram of LTO-Ti with the range of 0-2.5 V vs. Li/Li⁺.

Materials	Nano structure	Direct synthesis	Current collector	C-Rate	Capacity retention	Reference
				1 C	92 %	
LTO- FSG	Nanowire	О	FSG	30 C	59 %	This work
				60 C	47 %	
LTO	Nanowire	О	Titanium	1 C	97 %	L. Shen ³⁸
				30 C	69 %	
LTO/ RGO	Nano-particle	Х	Copper	1 C	99 %	Q. Zhang ⁵⁹
				20 C	64 %	
LTO/ graphene nanosheet	Nano-particle	Х	Copper	1 C	91%	B. Zhang ⁶⁰
				4 C	58 %	
LTO / C	Nano- composite	Х	Copper	1C	79 %	W. Fang ⁶¹
				20 C	34 %	
LTO	Hierarchical hollow LTO Unchin-like microsphere	Х	Copper	1 C	98 %	J. Cheng ⁶²
				20 C	69 %	
LTO/ TIO ₂ / Carbon	Mesoporous microsphere with nanostructure	Х	Copper	1 C	96 %	L. Gao ⁶³
				5 C	70 %	
LTO/ graphene	LTO nanoparticle on graphene	Х	Copper	1 C	93 %	L. Shen ⁶⁴
				60 C	47 %	
LTO	Donut-shape with nano grain	Х	Copper	1 C	73 %	A. K. Haridas ⁶⁵
				10 C	38 %	

Table S1. High power capability comparison of LTO-based anodes.

Table S2. Comparison of several researches of binder-free synthesis electrode with focusing on
 inactive materials with lithium ion which do not make any capacity.

Materials	structure	Direct synthesis	Inactive materials	Flexibility	Reference
LTO-FSG	LTO nanowire on FSG	О	Х	Ô	Our work
LTO	LTO nanowire on titanium foil	О	Titanium	Δ	L. Shen ³⁸
LTO	LTO nanosheet on titanium foil	О	Titanium	0	S. Chen ⁵⁵
LTO-C	LTO-C nanotube on stainless steel	О	Stainless steel(iron)	Δ	J. Liu ⁶⁷
LTO	LTO slurry on CNT/PVDF- coated paper	Х	Additive, PVDF	0	Q. Cheng ⁶⁸
Si	Silicon nanotube on stainless steel	О	Stainless steel(iron)	Х	T. Song ³⁴
Si	Silicon nanowire on stainless steel	0	Stainless steel(iron)	X	C. K. Chan ⁶⁹
ZnCo ₂ O ₄	ZnCo ₂ O ₄ nanowire on carbon cloth	О	Carbon cloth (low property)	0	B. Liu ²⁴