Supporting Information for

MOF-Templated Nanorice-Nanosheet Core-Satellite Iron Dichalcogenides by Heterogeneous Sulfuration for HighPerformance Lithium Ion Batteries

Huicong Pang[†], Weiwei Sun[†], Li-Ping Lv, Feiying Jin and Yong Wang*

Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, P. R. China, 200444 *Corresponding authors: Tel: +86-21-66137723; fax: +86-21-66137725.

Email address: yongwang@shu.edu.cn

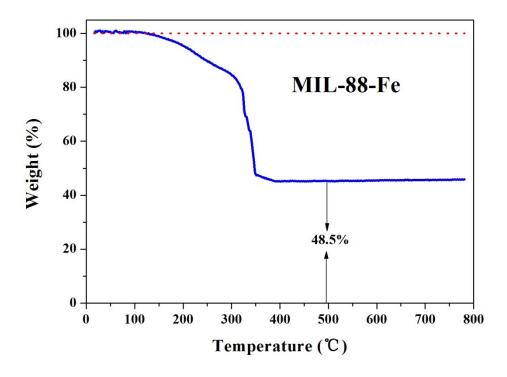


Fig. S1 TGA curve of MIL-88-Fe

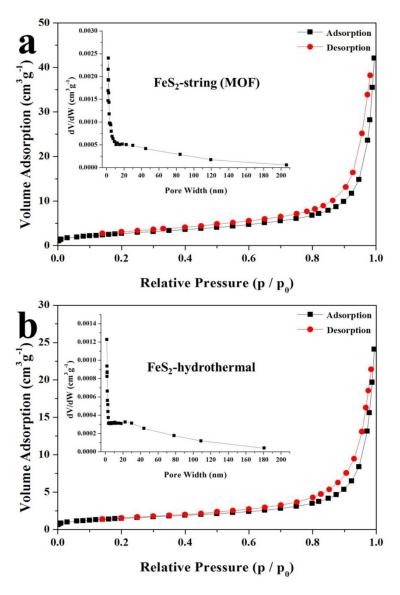


Fig. S2 Nitrogen adsorption isotherms of (a) ${\rm FeS_2\text{-}string}$ (MOF) and (b) ${\rm FeS_2\text{-}}$ hydrothermal

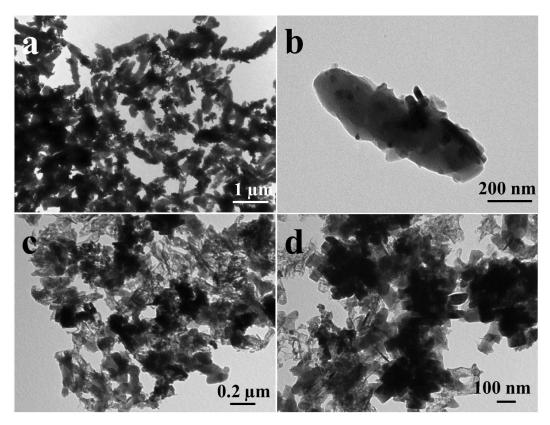


Fig. S3 TEM images of FeS_2 products with different ratios of the MOF intermediate and sulfur: (a-b) 1 : 2.5, (c-d) 1 : 10.

Table S1. Electrochemical property comparison between FeS₂@C of this work and previous relative reports.

	FeS ₂	Electrochemical Performances	D 4
Material	Morphology	(charge capacity refers to the lithium extraction capacity)	Reference
FeS ₂ @C	Nanorice- nanosheet core- satellite with carbon overlayer	An initial charge capacity of 1256.3 mA h $\rm g^{-1}$ and the retained capacity of 1336.5 mA h $\rm g^{-1}$ after 200 cycles. (100 mA $\rm g^{-1}$, 0.005-3.0 V)	This work
FeS ₂	Nanoparticle	An initial charge capacity of \sim 580 mA h g ⁻¹ and the retained capacity of \sim 600 mA h g ⁻¹ after 100 cycles. (100 mA g ⁻¹ , 0.005-3.0 V)	13
FeS ₂	Nanoparticle	An initial charge capacity of \sim 580 mA h g ⁻¹ and the retained capacity of \sim 400 mA h g ⁻¹ after 30 cycles. (89 mA g ⁻¹ , 1.2-2.6 V)	14
FeS ₂	Nanoparticle	An initial charge capacity of \sim 590 mA h g ⁻¹ and the retained capacity of \sim 480 mA h g ⁻¹ after 50 cycles (89 mA g ⁻¹ , 1.0-3.0 V)	15
FeS ₂	Nanoparticle	An initial charge capacity of \sim 500 mA h g ⁻¹ and the retained capacity of \sim 360 mA h g ⁻¹ after 30 cycles. (100 mA g ⁻¹ , 0.001-3.0 V)	16
FeS ₂	Nanoparticle	An initial charge capacity of \sim 810 mA h g ⁻¹ and the retained capacity of \sim 420 mA h g ⁻¹ after 40 cycles. (89 mA g ⁻¹ , 0.8-2.4 V)	17
FeS ₂	Hollow microsphere	An initial charge capacity of \sim 820 mA h g ⁻¹ and the retained capacity of \sim 537 mA h g ⁻¹ after 30 cycles. (178 mA g ⁻¹ , 1.0-2.5 V)	18
FeS ₂	Nanocube	An initial charge capacity of \sim 650 mA h g ⁻¹ and the retained capacity of \sim 540 mA h g ⁻¹ after 150 cycles. (1000 mA g ⁻¹ , 0.001-3.0 V)	19
FeS ₂	Nanowire	An initial charge capacity of 409 mA h $\rm g^{-1}$ and the retained capacity of 350 mA h $\rm g^{-1}$ after 50 cycles. (89 mA $\rm g^{-1}$, 1.1-2.4 V)	20

FeS ₂ @C		An initial charge capacity of ~620 mA h g ⁻¹ and	
	Nanoparticle in	the retained capacity of ~490 mA h g ⁻¹ after 50 cycles.	21
	carbon	(45 mA g ⁻¹ , 1.2-2.6 V)	
FeS ₂ @CNT	Nanoparticle in carbon nanotube	An initial charge capacity of ~690 mA h g ⁻¹ and	
		the retained capacity of ~800 mA h g ⁻¹ after 200 cycles.	22
		(200 mA g ⁻¹ , 0.01-3.0 V)	
FeS ₂	Nanoparticle on carbon fiber	An initial charge capacity of 1382 mA h g ⁻¹ and	
/carbon		the retained capacity of ~680 mA h g-1 after 100 cycles.	23
fiber		(100 mA g ⁻¹ , 0.01-3.0 V)	
F. C. /	Nanoparticle on graphene	An initial charge capacity of 923 mA h g ⁻¹ and	
FeS ₂ / Graphene		the retained capacity of \sim 1000 mA h g ⁻¹ after 80 cycles.	24
		(89 mA g ⁻¹ , 0.005-3.0 V)	
	Microsphere on graphene	An initial charge capacity of ~750 mA h g-1 and	
FeS ₂ /Graph		the retained capacity of ~950 mA h g ⁻¹ after 300 cycles.	25
ene		(890 mA g ⁻¹ , 0.01-3.0 V)	
	Microsphere with carbon overlayer	An initial charge capacity of ~860 mA h g ⁻¹ and	
FeS ₂ @C		the retained capacity of ~440 mA h g ⁻¹ after 50 cycles.	26
		(250 mA g ⁻¹ , 1.0-2.6 V)	
	Nanocube on graphene	An initial charge capacity of 1147 mA h g ⁻¹ and	
FeS ₂ /Graph ene		the retained capacity of 1001 mA h g ⁻¹ after 60 cycles.	27
		(100 mA g ⁻¹ , 0.01-3.0 V)	
		An initial charge capacity of 657 mA h g ⁻¹ and	
FeS ₂ @C	Nanowire with carbon overlayer	the retained capacity of 560 mA h g ⁻¹ after 100 cycles.	28
		(100 mA g ⁻¹ , 1.0-3.0 V)	
	Nanoflake with	An initial charge capacity of ~750 mA h g ⁻¹ and	
Co/ FeS ₂ @C	carbon overlayer	the retained capacity of ~530 mA h g ⁻¹ after 70 cycles.	29
	on Co nanowire	(222.5 mA g ⁻¹ , 1.2-2.6 V)	
FeS ₂ @C	Nanooctahedra	An initial charge capacity of 566 mA h g ⁻¹ and	
	with carbon	the retained capacity of ~470 mA h g ⁻¹ after 50 cycles.	30
		(447 mA g ⁻¹ , 1.0-3.0 V)	