SUPPLEMENTAL INFORMATION

Photodeposited Ruthenium Dioxide Films for Oxygen Evolution Reaction Electrocatalysis

D.A. Salvatore¹, B. Peña,² K.E. Dettelbach,² C. P. Berlinguette^{1,2,*}

¹Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T1Z3, Canada.

²Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6H1Z1, Canada.

*Correspondence to: <u>cberling@chem.ubc.ca</u> (CPB)

Figure S1. (a) Powder X-ray diffractograms for *a*-RuO₂ prepared by UVDD of Ru(tmhd)₂(COD) on FTO (blue). The diffractogram for bare FTO (red) and a reference rutile RuO₂ pattern (gray bars, PDF # 00-043-1027) are also shown. (b) Diffractogram of a film showing the evolution of rutile RuO₂ (orange) when *a*-RuO₂ (blue) is heated to 500°C in a box furnace. The black arrow indicates the Bragg diffraction peak corresponding to the 110 reflection of rutile RuO₂ at $2\Theta = 28^{\circ}$.

Figure S2. SEM image (side-view) of a-RuO₂ film (prepared by UVDD) that shows delamination from the FTO surface.

Figure S3. (a) Near-infrared-driven decomposition (NIRDD) of $\text{RuCl}_3 \cdot n\text{H}_2\text{O}$ into RuO_2 . The coated FTO subtrate is placed under the NIR lamp at a distance of 1 cm from the bottom of the lamp. (b) Photographs of three samples of spin-cast films of $\text{RuCl}_3 \cdot n\text{H}_2\text{O}$ on FTO that were subjected to the NIRDD process to produce films of RuO_2 .

Figure S4. EDX spectrum (electron gun voltage = 10 keV) for (a) RuCl₃ on FTO and (b) **RuO₂-NIRDD** on FTO. The Sn L group of signals is sourced to the FTO underlayer.

Figure S5. (a) Powder X-ray diffractograms for **RuO₂-NIRDD** prepared by NIRDD on FTO (blue). The diffractogram for bare FTO (red) and a reference rutile RuO₂ pattern (gray bars, PDF # 00-043-1027) are also shown. The black arrows indicate the diffraction peaks of **RuO₂-NIRDD**. (b) Expansion of the 20°-40° region of the diffractogram pattern of **RuO₂-NIRDD** on FTO showing broad diffraction peaks centered at $2\Theta = 28^{\circ}$ (110), 35° (101) and 40° (200). (c) Diffractogram patterns of **RuO₂-NIRDD** (blue) superimposed on **RuO₂-thermal** (prepared at 500°C, orange).

Figure S6. EDX spectrum (electron gun voltage = 10 keV) and corresponding Ru atomic percent values of three different spots on the **RuO₂-NIRDD** film showing reasonably uniform values.

Figure S7. Powder X-ray diffractograms for **RuO₂-NIRDD** (red) and **RuO₂-thermal** (blue) on glass. The numbers correspond to the peaks that were used to determine crystallite size using the Sherrer equation.

Figure S8. (a) Cyclic voltammograms (10 mV s⁻¹, 1 M H₂SO₄) of *a*-RuO₂ film on FTO prepared by the UVDD process (green) and *a*-RuO₂ film on FTO prepared by the UVDD process that was annealed at 300°C prior to the electrochemical studies (red). (b) Chronopotentiometry at j = 10 mA cm⁻² in 1 M H₂SO₄.

Figure S9. Double layer capacitance measurements of RuO_2 -NIRDD and RuO_2 -thermal in 1 M H₂SO₄. The electrochemically active surface area (ECSA) of the catalyst was calculated by dividing the slope of the above plot by the specific capacitance of the sample. Here we use a general specific capacitance of 0.035 mF cm⁻² in 1 M H₂SO₄.

Figure S10. Chronopotentiometry experiment of RuO₂-NIRDD at j = 10 mA cm⁻² in 1 M H₂SO₄.

a) RuO₂- NIRDD/2.5% w/w

b) RuO₂- NIRDD/5% w/w

c) RuO₂- NIRDD/10% w/w

Figure S12. Cyclic voltammograms (10 mV s⁻¹, 1 M H₂SO₄) of **RuO₂-NIRDD** films on FTO with different precursor solutions: 2.5% *w/w* (grey), 5% *w/w* (red), and 10% *w/w* (black).