Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

# **Electronic Supplementary Information (ESI)**

# Solvent-free synthesis of hierarchical zeolite Y by carbochlorination

Martin Nichterwitz,<sup>a</sup> Sven Grätz,<sup>a</sup> Winfried Nickel,<sup>a</sup> and Lars Borchardt<sup>a</sup>

<sup>a</sup>Inorganic Chemistry, TU Dresden, Bergstrasse 66, D-01062 Dresden, Germany

| S.1 Chlorination temperature    | 2  |
|---------------------------------|----|
| S.2 Carbon Content in Composite | 3  |
| S.3 Reaction time               | 7  |
| S.4 Chlorine concentration      | 9  |
| S.5 Si/Al ratio                 | 11 |
| S.6 References                  | 13 |

# S.1 Chlorination temperature



Fig. S1 <sup>29</sup>Si CP-MAS NMR spectra of the parent zeolite and composite 2 prepared at 400 and 500 °C. Si(nAl) species have been assigned according to [S1]



Fig. S2 <sup>27</sup>AI CP-MAS NMR spectra of the parent zeolite and composite 2 prepared at 400 and 500 °C. AI species have been assigned according to [S2]

### S.2 Carbon Content in Composite



Fig. S3 TG/MS of parent material and all 3 composites with different carbon loadings under synthetic air from 25 to 1250 °C (heating rate 5 K min<sup>-1</sup>)



Fig. S4 N2-Isotherms at -196 °C of samples at 500 °C from different zeolite-carbon composite red (C1-500-4-10/70), blue (C2-500-4-10/70), green (C3-500-4-10/70)



Fig. S5  $N_2$ -adsorption isotherms of parent material and samples with different carbon loadings carbochlorinated at 400 °C



Fig. S6  $N_{2.}$  adsorption isotherms of parent material and samples with different carbon loadings carbochlorinated at 600 °C



Fig. S7 Powder XRD of carbochlorinated samples with different carbon loadings at 400 °C, 500 °C and 600 °C. Diffractograms are normalized on the main reflex [111] at 6 ° 2θ.



Fig. S8 TPAD of parent material and samples with different carbon loadings carbochlorinated at 400 °C after calcination under air for 6 h at 550 °C.



Fig. S9 TPAD of parent material and samples with different carbon loadings carbochlorinated at 600 °C after calcination under air for 6 h at 550 °C.

# S.3 Reaction time



Fig. S10 N<sub>2</sub>-Isotherms at -196 °C from composite 2 samples at 400 °C and 500 °C with different reaction time



Fig. S11 N<sub>2</sub>-adsorption isotherms of parent material and samples carbochlorinated at 500°C and 600 °C over 2 h, 4 h or 8 h, respectively



Fig. S12 TPAD of parent material and samples carbochlorinated at 500°C and 600 °C over 2h, 4 h or 8 h, respectively. Samples were calcinated under air for 6 h at 550 °C.



Fig. S13 Powder XRD of parent material and samples carbochlorinated at 500°C and 600 °C over 2h, 4 h or 8 h, respectively. Diffractograms are normalized on the main reflex [111] at 6 ° 20.

### S.4 Chlorine concentration



Fig. S14 N<sub>2</sub>-adsorption isotherms of parent material and samples carbochlorinated at 600 °C for 4 h with different chlorine concentrations.



Fig. S15 Powder XRD of parent material and samples carbochlorinated at 600 °C for 4 h with different chlorine concentrations. Diffractograms are normalized on the main reflex [111] at 6 ° 2θ.



Fig. S16 TPAD of parent material and samples carbochlorinated at 600 °C for 4 h with different chlorine concentrations. Samples were calcinated under air for 6 h at 550 °C.

| Table S1 characterization data of samples synthesized at 600 °C for different chlorine concentrations. Physisorption data derived from N <sub>2</sub> -isotherms measured at -196 °C. |                                               |                                                          |                                                   |                           |                                      |                 |                                      |                                          |                            |                           |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------------------------------------------------|---------------------------|--------------------------------------|-----------------|--------------------------------------|------------------------------------------|----------------------------|---------------------------|--|
| Sample <sup>a</sup>                                                                                                                                                                   | Si/Al <sup>b</sup><br>/ mol mol <sup>-1</sup> | SSA <sub>BET</sub> c<br>/ m <sup>2</sup> g <sup>-1</sup> | PV d<br>total<br>/ m <sup>3</sup> g <sup>-1</sup> | PV e<br>micro<br>/ m³ g-1 | PV f<br>meso<br>/ m³ g <sup>-1</sup> | HF <sup>g</sup> | C <sub>xRD</sub> <sup>h</sup><br>/ % | Total acidity <sup>i</sup><br>∕ mmol g⁻¹ | C <sub>res</sub> j<br>/ w% | Yield <sup>k</sup><br>/w% |  |
| H-Y 5 pure                                                                                                                                                                            | 3.0                                           | 751                                                      | 0.43                                              | 0.29                      | 0.12                                 | 0.08            | 100                                  | 0.995                                    | -                          | -                         |  |
| C2-600-4-10/110                                                                                                                                                                       | 16.0                                          | 287                                                      | 0.40                                              | 0.06                      | 0.34                                 | 0.08            | 28                                   | 0.412                                    | 1.09                       | 70.6                      |  |
| C2-600-4-10/70                                                                                                                                                                        | 18.3                                          | 275                                                      | 0.42                                              | 0.05                      | 0.37                                 | 0.07            | 26                                   | 0.227                                    | 0.71                       | 72.2                      |  |
| a sample descripti<br>b ICP-OES element                                                                                                                                               | on given in expe<br>tal analysis              | erimental se                                             | ection                                            |                           |                                      |                 |                                      |                                          |                            |                           |  |

c Multi-point BET-method

d Total pore volume at  $p/p_0 = 0.95$ 

e t-plot method p/p0 from 0.2 to 0.5

f PV<sub>meso</sub> = PV<sub>total</sub> - PV<sub>micro</sub>

g hierarchy factor HF =  $(PV_{micro}/PV_{total}) (S_{ext}/SSA_{BET})^{70}$ 

h % XRD intensity/HY after ASTM 3906-03<sup>69</sup>

i total acidity determined by TPAD

j residual carbon (C<sub>res</sub>) analyzed by TG; C<sub>res</sub> = C<sub>sample</sub> – C<sub>H-Y 5 pure</sub>

k calculated by weighing before and after carbochlorinatio

# S.5 Si/Al ratio



Fig. S17 N<sub>2</sub>-adsorption isotherms of parent material and composite 5 carbochlorinated at different temperatures for 4 h respectively



Fig. S18 XRD from composite 5 samples carbochlorinated at different temperatures. Diffractograms are normalized on the main reflex [111] at 6 ° 20.



Fig. S19 TG/MS of parent material and all 3 composites with different carbon loadings under synthetic air from 25 to 1250 °C (heating rate 5 K min<sup>-1</sup>)



Fig. S20 TPAD of parent material and samples with different carbon loadings carbochlorinated at 800 °C after calcination under air for 6 h at 550 °C.

# **S.6 References**

[S1] Jiao, J., Wang, W., Sulikowski, B., Weitkamp, J., & Hunger, M. (2006). 29 Si and 27 Al MAS NMR characterization of non-hydrated zeolites Y upon adsorption of ammonia. *Microporous and mesoporous materials*, *90*(1), 246-250.

[S2] Van Bokhoven, J. A., Roest, A. L., Koningsberger, D. C., Miller, J. T., Nachtegaal, G. H., & Kentgens, A. P. M. (2000). Changes in structural and electronic properties of the zeolite framework induced by extraframework AI and La in H-USY and La (x) NaY: A 29Si and 27AI MAS NMR and 27AI MQ MAS NMR study. *The Journal of Physical Chemistry B*, *104*(29), 6743-6754.